一种机器学习方法,利用震级和后果的层次来形成地震类别,以指导应急管理

Donald Douglas Atsa'am , Terlumun Gbaden , Ruth Wario
{"title":"一种机器学习方法,利用震级和后果的层次来形成地震类别,以指导应急管理","authors":"Donald Douglas Atsa'am ,&nbsp;Terlumun Gbaden ,&nbsp;Ruth Wario","doi":"10.1016/j.dsm.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>This study deployed <em>k</em>-means clustering to formulate earthquake categories based on magnitude and consequence, using global earthquake data spanning from 1900 to 2021. Based on patterns within the historical data, numeric boundaries were extracted to categorize the magnitude, deaths, injuries, and damage caused by earthquakes into low, medium, and high classes. Following a future earthquake incident, the classification scheme can be utilized to assign earthquakes into appropriate categories by inputting the magnitude, number of fatalities and injuries, and monetary estimates of total damage. The resulting taxonomy provides a means of classifying future earthquake incidents, thereby guiding the allocation and deployment of disaster management resources in proportion to the specific characteristics of each incident. Furthermore, the scheme can serve as a reference tool for auditing the utilization of earthquake management resources.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764923000310/pdfft?md5=d091cab3db8db2f195cb54b6af5a5125&pid=1-s2.0-S2666764923000310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to formation of earthquake categories using hierarchies of magnitude and consequence to guide emergency management\",\"authors\":\"Donald Douglas Atsa'am ,&nbsp;Terlumun Gbaden ,&nbsp;Ruth Wario\",\"doi\":\"10.1016/j.dsm.2023.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study deployed <em>k</em>-means clustering to formulate earthquake categories based on magnitude and consequence, using global earthquake data spanning from 1900 to 2021. Based on patterns within the historical data, numeric boundaries were extracted to categorize the magnitude, deaths, injuries, and damage caused by earthquakes into low, medium, and high classes. Following a future earthquake incident, the classification scheme can be utilized to assign earthquakes into appropriate categories by inputting the magnitude, number of fatalities and injuries, and monetary estimates of total damage. The resulting taxonomy provides a means of classifying future earthquake incidents, thereby guiding the allocation and deployment of disaster management resources in proportion to the specific characteristics of each incident. Furthermore, the scheme can serve as a reference tool for auditing the utilization of earthquake management resources.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000310/pdfft?md5=d091cab3db8db2f195cb54b6af5a5125&pid=1-s2.0-S2666764923000310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用1900年至2021年的全球地震数据,采用k-means聚类,根据震级和后果制定地震类别。根据历史数据中的模式,提取数字边界,将地震的震级、死亡、受伤和破坏分为低、中、高级别。在未来的地震事件发生后,分类方案可以通过输入震级、伤亡人数和总损失的货币估计来将地震划分为适当的类别。由此产生的分类法提供了一种对未来地震事件进行分类的方法,从而指导灾害管理资源的分配和部署,使之与每次事件的具体特征成比例。此外,该方案还可作为地震管理资源利用审计的参考工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to formation of earthquake categories using hierarchies of magnitude and consequence to guide emergency management

This study deployed k-means clustering to formulate earthquake categories based on magnitude and consequence, using global earthquake data spanning from 1900 to 2021. Based on patterns within the historical data, numeric boundaries were extracted to categorize the magnitude, deaths, injuries, and damage caused by earthquakes into low, medium, and high classes. Following a future earthquake incident, the classification scheme can be utilized to assign earthquakes into appropriate categories by inputting the magnitude, number of fatalities and injuries, and monetary estimates of total damage. The resulting taxonomy provides a means of classifying future earthquake incidents, thereby guiding the allocation and deployment of disaster management resources in proportion to the specific characteristics of each incident. Furthermore, the scheme can serve as a reference tool for auditing the utilization of earthquake management resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信