优秀的闪纯粹和西蒙

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
T. Fritz
{"title":"优秀的闪纯粹和西蒙","authors":"T. Fritz","doi":"10.1137/22M1498413","DOIUrl":null,"url":null,"abstract":"Real algebra is usually thought of as the study of certain kinds of preorders on fields and rings. Among its core themes are the separation theorems known as Positivstellens\\\"atze. However, there is a nascent subfield of real algebra which studies preordered semirings and semifields, which is motivated by applications to probability, graph theory and theoretical computer science, among others. Here, we contribute to this subfield by developing a number of foundational results for it, with two abstract Vergleichsstellens\\\"atze being our main theorems. Our first Vergleichsstellensatz states that every semifield preorder is the intersection of its total extensions. We apply this to derive our second main result, a Vergleichsstellensatz for certain non-Archimedean preordered semirings in which the homomorphisms to the tropical reals play an important role. We show how this result recovers the existing Vergleichsstellensatz of Strassen and (through the latter) the classical Positivstellensatz of Krivine--Kadison--Dubois.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Abstract Vergleichsstellensätze for Preordered Semifields and Semirings I\",\"authors\":\"T. Fritz\",\"doi\":\"10.1137/22M1498413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real algebra is usually thought of as the study of certain kinds of preorders on fields and rings. Among its core themes are the separation theorems known as Positivstellens\\\\\\\"atze. However, there is a nascent subfield of real algebra which studies preordered semirings and semifields, which is motivated by applications to probability, graph theory and theoretical computer science, among others. Here, we contribute to this subfield by developing a number of foundational results for it, with two abstract Vergleichsstellens\\\\\\\"atze being our main theorems. Our first Vergleichsstellensatz states that every semifield preorder is the intersection of its total extensions. We apply this to derive our second main result, a Vergleichsstellensatz for certain non-Archimedean preordered semirings in which the homomorphisms to the tropical reals play an important role. We show how this result recovers the existing Vergleichsstellensatz of Strassen and (through the latter) the classical Positivstellensatz of Krivine--Kadison--Dubois.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22M1498413\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22M1498413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

实代数通常被认为是对域和环上某些类型的预序的研究。它的核心主题之一是被称为Positivstellens\ atze的分离定理。然而,有一个新兴的实代数的子领域,它研究预定的半环和半域,这是由应用到概率论,图论和理论计算机科学,等等。在这里,我们通过开发一些基本结果来为这个子领域做出贡献,其中两个抽象的Vergleichsstellens\“atze是我们的主要定理。我们的第一个Vergleichsstellensatz表明,每一个半域预序都是它的总扩展的交集。我们利用这一结果推导出第二个主要结果,即某些非阿基米德序半环的Vergleichsstellensatz,其中热带实的同态起重要作用。我们展示了这个结果如何恢复现有的Strassen的Vergleichsstellensatz和(通过后者)经典的Krivine- Kadison- Dubois的Positivstellensatz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract Vergleichsstellensätze for Preordered Semifields and Semirings I
Real algebra is usually thought of as the study of certain kinds of preorders on fields and rings. Among its core themes are the separation theorems known as Positivstellens\"atze. However, there is a nascent subfield of real algebra which studies preordered semirings and semifields, which is motivated by applications to probability, graph theory and theoretical computer science, among others. Here, we contribute to this subfield by developing a number of foundational results for it, with two abstract Vergleichsstellens\"atze being our main theorems. Our first Vergleichsstellensatz states that every semifield preorder is the intersection of its total extensions. We apply this to derive our second main result, a Vergleichsstellensatz for certain non-Archimedean preordered semirings in which the homomorphisms to the tropical reals play an important role. We show how this result recovers the existing Vergleichsstellensatz of Strassen and (through the latter) the classical Positivstellensatz of Krivine--Kadison--Dubois.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信