Kadomtsev-Petviashvili方程耦合解的渐近性

Igor Anders
{"title":"Kadomtsev-Petviashvili方程耦合解的渐近性","authors":"Igor Anders","doi":"10.1016/S0764-4442(01)02070-5","DOIUrl":null,"url":null,"abstract":"<div><p>We determine a subset in <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (<em>x</em>,<em>t</em>)↦(−<em>x</em>,−<em>t</em>), and split into asymptotic solitons as <em>t</em>→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 891-896"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02070-5","citationCount":"1","resultStr":"{\"title\":\"Asymptotics of coupled solutions of the Kadomtsev–Petviashvili equation\",\"authors\":\"Igor Anders\",\"doi\":\"10.1016/S0764-4442(01)02070-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We determine a subset in <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (<em>x</em>,<em>t</em>)↦(−<em>x</em>,−<em>t</em>), and split into asymptotic solitons as <em>t</em>→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 891-896\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02070-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201020705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们确定了R2中的一个子集和该集合上的一个测度,该子集允许构造KP-I方程的耦合非定域解,这些非定域解由变量(x,t)的变换(−x,−t)连接,并在解的前缘邻域中t→∞时分裂为渐近孤子。每个解对应的孤子具有不同的振幅和恒相线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of coupled solutions of the Kadomtsev–Petviashvili equation

We determine a subset in R2 and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (x,t)↦(−x,−t), and split into asymptotic solitons as t→∞ in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信