非定常薄膜内加热辐射流动的解析解

IF 0.7 Q2 MATHEMATICS
Ahsan Ali Naseer, M. Safdar, S. Taj, M. U. Ali, A. Zafar, Kwanghyok Kim, Jong Hyuk Byun
{"title":"非定常薄膜内加热辐射流动的解析解","authors":"Ahsan Ali Naseer, M. Safdar, S. Taj, M. U. Ali, A. Zafar, Kwanghyok Kim, Jong Hyuk Byun","doi":"10.1155/2023/5612023","DOIUrl":null,"url":null,"abstract":"This study determines Lie point symmetries for differential equations that mathematically express a time-dependent thin film fluid flow with internal heating and thermal radiation to construct invariants. These invariants are used in the derivation of similarity transformations for reducing the flow equations into systems of equations that possess only one independent variable. The homotopy analysis method is employed to analytically solve the reduced system of equations. The new similarity transformations and the corresponding analytical solutions comprehensively consider flow dynamics and heat transfer under multiple physical conditions. These solutions are presented graphically to demonstrate the effects of variations in the radiative heat flux with internal heating on the flow dynamics and heat transfer properties. Moreover, the variations in fluid dynamics are described graphically using the obtained analytical homotopy solution under different values of the unsteadiness parameter and Prandtl number.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Solutions for Unsteady Thin Film Flow with Internal Heating and Radiation\",\"authors\":\"Ahsan Ali Naseer, M. Safdar, S. Taj, M. U. Ali, A. Zafar, Kwanghyok Kim, Jong Hyuk Byun\",\"doi\":\"10.1155/2023/5612023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study determines Lie point symmetries for differential equations that mathematically express a time-dependent thin film fluid flow with internal heating and thermal radiation to construct invariants. These invariants are used in the derivation of similarity transformations for reducing the flow equations into systems of equations that possess only one independent variable. The homotopy analysis method is employed to analytically solve the reduced system of equations. The new similarity transformations and the corresponding analytical solutions comprehensively consider flow dynamics and heat transfer under multiple physical conditions. These solutions are presented graphically to demonstrate the effects of variations in the radiative heat flux with internal heating on the flow dynamics and heat transfer properties. Moreover, the variations in fluid dynamics are described graphically using the obtained analytical homotopy solution under different values of the unsteadiness parameter and Prandtl number.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5612023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5612023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究确定了具有内部加热和热辐射的随时间变化的薄膜流体流动的微分方程的李点对称性,以构造不变量。这些不变量用于推导相似变换,将流动方程简化为只有一个自变量的方程组。采用同伦分析方法解析求解简化方程组。新的相似变换和相应的解析解综合考虑了多种物理条件下的流动动力学和传热。这些解以图形的形式展示了内加热时辐射热通量的变化对流动动力学和传热性能的影响。此外,利用得到的解析同伦解,用图形描述了在不同非定常参数和普朗特数下流体动力学的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Solutions for Unsteady Thin Film Flow with Internal Heating and Radiation
This study determines Lie point symmetries for differential equations that mathematically express a time-dependent thin film fluid flow with internal heating and thermal radiation to construct invariants. These invariants are used in the derivation of similarity transformations for reducing the flow equations into systems of equations that possess only one independent variable. The homotopy analysis method is employed to analytically solve the reduced system of equations. The new similarity transformations and the corresponding analytical solutions comprehensively consider flow dynamics and heat transfer under multiple physical conditions. These solutions are presented graphically to demonstrate the effects of variations in the radiative heat flux with internal heating on the flow dynamics and heat transfer properties. Moreover, the variations in fluid dynamics are described graphically using the obtained analytical homotopy solution under different values of the unsteadiness parameter and Prandtl number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信