{"title":"ABE发酵丁醇高效、经济分离纯化策略的关键分析","authors":"T. C., K. Uppuluri","doi":"10.1080/15422119.2022.2112052","DOIUrl":null,"url":null,"abstract":"ABSTRACT Biobutanol is a potential biofuel produced from various biomass and can serve as a suitable alternative to the nonrenewable fossil-based gasoline fuel. The fermentative microbes used for biobutanol production are solvent-producing Clostridium organisms by Acetone-Butanol-Ethanol (ABE) fermentation. The major challenges of ABE fermentation are butanol toxicity to the host strain, lack of effective fermentation strategies, inefficient butanol separation, and low 0.5–2% w/w yield. Butanol forms an azeotropic mixture with water and requires 79.5 MJ/kg energy for separation using conventional distillation when the energy content of butanol is only 36 MJ/kg; hence the separation by traditional distillation processes is inefficient. Recent developments in membrane technology, coupled with novel extractants and adsorbents, are promising for efficient, energy-effective, and economical bio-butanol separation. Among the techniques, liquid-liquid extraction has shown a high separation efficiency of 75–85% butanol with an energy demand of 25 MJ/kg, whereas adsorption and pervaporation have shown an energy demand of 35–40 MJ/kg. In the present review, a critical analysis of the recent trends, strategies, technical prospects, challenges, and economical evaluation of different methods of biobutanol recovery is presented.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":"3 1","pages":"353 - 378"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Critical Analysis of Various Strategies for the Effective and Economical Separation and Purification of Butanol from ABE Fermentation\",\"authors\":\"T. C., K. Uppuluri\",\"doi\":\"10.1080/15422119.2022.2112052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Biobutanol is a potential biofuel produced from various biomass and can serve as a suitable alternative to the nonrenewable fossil-based gasoline fuel. The fermentative microbes used for biobutanol production are solvent-producing Clostridium organisms by Acetone-Butanol-Ethanol (ABE) fermentation. The major challenges of ABE fermentation are butanol toxicity to the host strain, lack of effective fermentation strategies, inefficient butanol separation, and low 0.5–2% w/w yield. Butanol forms an azeotropic mixture with water and requires 79.5 MJ/kg energy for separation using conventional distillation when the energy content of butanol is only 36 MJ/kg; hence the separation by traditional distillation processes is inefficient. Recent developments in membrane technology, coupled with novel extractants and adsorbents, are promising for efficient, energy-effective, and economical bio-butanol separation. Among the techniques, liquid-liquid extraction has shown a high separation efficiency of 75–85% butanol with an energy demand of 25 MJ/kg, whereas adsorption and pervaporation have shown an energy demand of 35–40 MJ/kg. In the present review, a critical analysis of the recent trends, strategies, technical prospects, challenges, and economical evaluation of different methods of biobutanol recovery is presented.\",\"PeriodicalId\":21744,\"journal\":{\"name\":\"Separation & Purification Reviews\",\"volume\":\"3 1\",\"pages\":\"353 - 378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation & Purification Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15422119.2022.2112052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2022.2112052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Analysis of Various Strategies for the Effective and Economical Separation and Purification of Butanol from ABE Fermentation
ABSTRACT Biobutanol is a potential biofuel produced from various biomass and can serve as a suitable alternative to the nonrenewable fossil-based gasoline fuel. The fermentative microbes used for biobutanol production are solvent-producing Clostridium organisms by Acetone-Butanol-Ethanol (ABE) fermentation. The major challenges of ABE fermentation are butanol toxicity to the host strain, lack of effective fermentation strategies, inefficient butanol separation, and low 0.5–2% w/w yield. Butanol forms an azeotropic mixture with water and requires 79.5 MJ/kg energy for separation using conventional distillation when the energy content of butanol is only 36 MJ/kg; hence the separation by traditional distillation processes is inefficient. Recent developments in membrane technology, coupled with novel extractants and adsorbents, are promising for efficient, energy-effective, and economical bio-butanol separation. Among the techniques, liquid-liquid extraction has shown a high separation efficiency of 75–85% butanol with an energy demand of 25 MJ/kg, whereas adsorption and pervaporation have shown an energy demand of 35–40 MJ/kg. In the present review, a critical analysis of the recent trends, strategies, technical prospects, challenges, and economical evaluation of different methods of biobutanol recovery is presented.