双模整数线性规划的强多项式算法

S. Artmann, R. Weismantel, R. Zenklusen
{"title":"双模整数线性规划的强多项式算法","authors":"S. Artmann, R. Weismantel, R. Zenklusen","doi":"10.1145/3055399.3055473","DOIUrl":null,"url":null,"abstract":"We present a strongly polynomial algorithm to solve integer programs of the form max{cT x: Ax≤ b, xεℤn }, for AεℤmXn with rank(A)=n, bε≤m, cε≤n, and where all determinants of (nXn)-sub-matrices of A are bounded by 2 in absolute value. In particular, this implies that integer programs max{cT x : Q x≤ b, xεℤ≥0n}, where Qε ℤmXn has the property that all subdeterminants are bounded by 2 in absolute value, can be solved in strongly polynomial time. We thus obtain an extension of the well-known result that integer programs with constraint matrices that are totally unimodular are solvable in strongly polynomial time.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A strongly polynomial algorithm for bimodular integer linear programming\",\"authors\":\"S. Artmann, R. Weismantel, R. Zenklusen\",\"doi\":\"10.1145/3055399.3055473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a strongly polynomial algorithm to solve integer programs of the form max{cT x: Ax≤ b, xεℤn }, for AεℤmXn with rank(A)=n, bε≤m, cε≤n, and where all determinants of (nXn)-sub-matrices of A are bounded by 2 in absolute value. In particular, this implies that integer programs max{cT x : Q x≤ b, xεℤ≥0n}, where Qε ℤmXn has the property that all subdeterminants are bounded by 2 in absolute value, can be solved in strongly polynomial time. We thus obtain an extension of the well-known result that integer programs with constraint matrices that are totally unimodular are solvable in strongly polynomial time.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

对于秩(a)=n, b≤m, c≤n,且a的(nXn)-子矩阵的所有行列式的绝对值均以2为界的形式为max{cT x: Ax≤b, xε xn}的整数规划,给出了一种强多项式算法。特别地,这意味着整数规划max{cT x: Q x≤b, xε n≥0n},其中Qε n mXn具有所有子行列式的绝对值以2为界的性质,可以在强多项式时间内求解。由此得到了具有完全非模约束矩阵的整数规划在强多项式时间内可解这一著名结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strongly polynomial algorithm for bimodular integer linear programming
We present a strongly polynomial algorithm to solve integer programs of the form max{cT x: Ax≤ b, xεℤn }, for AεℤmXn with rank(A)=n, bε≤m, cε≤n, and where all determinants of (nXn)-sub-matrices of A are bounded by 2 in absolute value. In particular, this implies that integer programs max{cT x : Q x≤ b, xεℤ≥0n}, where Qε ℤmXn has the property that all subdeterminants are bounded by 2 in absolute value, can be solved in strongly polynomial time. We thus obtain an extension of the well-known result that integer programs with constraint matrices that are totally unimodular are solvable in strongly polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信