被动预冷的潜力,减少建筑空调负荷在炎热气候

H. Chaudhry, B. Hughes
{"title":"被动预冷的潜力,减少建筑空调负荷在炎热气候","authors":"H. Chaudhry, B. Hughes","doi":"10.1080/10789669.2014.952976","DOIUrl":null,"url":null,"abstract":"The passive airside cooling capability of heat pipes operating under high-temperature natural ventilation airstreams was investigated in this study. Pure water was used as the internal working fluid to ensure the system remained sustainable in its operation. The physical domain included 19 cylindrical copper heat pipes assembled in a systematic vertical arrangement. Using the monthly temperature data of Doha, Qatar, as a case-study reference, the efficiency of the heat pipe model was analyzed at fixed inlet air velocities of 1 and 2.3 m/s. At a source temperature of 314 K, the results showed a maximum temperature reduction of 3.8 K for an external air velocity of 1 m/s. A cooling load of 976 W was achieved, indicating a heat pipe effectiveness of 6.4% when the velocity was increased to 2.3 m/s. Wind tunnel experimental testing was conducted to validate the findings. A good correlation was observed between the two techniques with error variations of 10% for velocity and 28% for temperature. The present work identified the potential of sustainable pre-cooling using heat pipes in natural ventilation airstreams for regions with hot and dry climatic conditions. The concept is currently under intellectual property protection (GB1321709.6).","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"1 1","pages":"738 - 750"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Passive pre-cooling potential for reducing building air-conditioning loads in hot climates\",\"authors\":\"H. Chaudhry, B. Hughes\",\"doi\":\"10.1080/10789669.2014.952976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The passive airside cooling capability of heat pipes operating under high-temperature natural ventilation airstreams was investigated in this study. Pure water was used as the internal working fluid to ensure the system remained sustainable in its operation. The physical domain included 19 cylindrical copper heat pipes assembled in a systematic vertical arrangement. Using the monthly temperature data of Doha, Qatar, as a case-study reference, the efficiency of the heat pipe model was analyzed at fixed inlet air velocities of 1 and 2.3 m/s. At a source temperature of 314 K, the results showed a maximum temperature reduction of 3.8 K for an external air velocity of 1 m/s. A cooling load of 976 W was achieved, indicating a heat pipe effectiveness of 6.4% when the velocity was increased to 2.3 m/s. Wind tunnel experimental testing was conducted to validate the findings. A good correlation was observed between the two techniques with error variations of 10% for velocity and 28% for temperature. The present work identified the potential of sustainable pre-cooling using heat pipes in natural ventilation airstreams for regions with hot and dry climatic conditions. The concept is currently under intellectual property protection (GB1321709.6).\",\"PeriodicalId\":13238,\"journal\":{\"name\":\"HVAC&R Research\",\"volume\":\"1 1\",\"pages\":\"738 - 750\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HVAC&R Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10789669.2014.952976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2014.952976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了高温自然通风气流下热管的被动空侧冷却性能。使用纯净水作为内部工作流体,以确保系统在运行中保持可持续性。物理领域包括19个圆柱形铜热管,以系统的垂直排列组合。以卡塔尔多哈的月度温度数据为例,分析了固定进口风速为1和2.3 m/s时热管模型的效率。在源温度为314 K时,当外部空气速度为1 m/s时,最大温度降低3.8 K。当速度增加到2.3 m/s时,热管效率为6.4%,冷却负荷为976 W。进行了风洞试验来验证研究结果。两种技术之间具有良好的相关性,速度误差变化为10%,温度误差变化为28%。目前的工作确定了在炎热干燥的气候条件下,在自然通风气流中使用热管进行可持续预冷的潜力。该概念目前受知识产权保护(GB1321709.6)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive pre-cooling potential for reducing building air-conditioning loads in hot climates
The passive airside cooling capability of heat pipes operating under high-temperature natural ventilation airstreams was investigated in this study. Pure water was used as the internal working fluid to ensure the system remained sustainable in its operation. The physical domain included 19 cylindrical copper heat pipes assembled in a systematic vertical arrangement. Using the monthly temperature data of Doha, Qatar, as a case-study reference, the efficiency of the heat pipe model was analyzed at fixed inlet air velocities of 1 and 2.3 m/s. At a source temperature of 314 K, the results showed a maximum temperature reduction of 3.8 K for an external air velocity of 1 m/s. A cooling load of 976 W was achieved, indicating a heat pipe effectiveness of 6.4% when the velocity was increased to 2.3 m/s. Wind tunnel experimental testing was conducted to validate the findings. A good correlation was observed between the two techniques with error variations of 10% for velocity and 28% for temperature. The present work identified the potential of sustainable pre-cooling using heat pipes in natural ventilation airstreams for regions with hot and dry climatic conditions. The concept is currently under intellectual property protection (GB1321709.6).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HVAC&R Research
HVAC&R Research 工程技术-工程:机械
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信