重整化群和扩散方程

M. Matsumoto, Gota Tanaka, A. Tsuchiya
{"title":"重整化群和扩散方程","authors":"M. Matsumoto, Gota Tanaka, A. Tsuchiya","doi":"10.1093/ptep/ptaa175","DOIUrl":null,"url":null,"abstract":"We study relationship between renormalization group and diffusion equation. We consider the exact renormalization group equation for a scalar field that includes an arbitrary cutoff function and an arbitrary quadratic seed action. As a generalization of the result obtained by Sonoda and Suzuki, we find that the correlation functions of diffused fields with respect to the bare action agree with those of bare fields with respect to the effective action, where the diffused field obeys a generalized diffusion equation determined by the cutoff function and the seed action and agrees with the bare field at the initial time.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The renormalization group and the diffusion equation\",\"authors\":\"M. Matsumoto, Gota Tanaka, A. Tsuchiya\",\"doi\":\"10.1093/ptep/ptaa175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study relationship between renormalization group and diffusion equation. We consider the exact renormalization group equation for a scalar field that includes an arbitrary cutoff function and an arbitrary quadratic seed action. As a generalization of the result obtained by Sonoda and Suzuki, we find that the correlation functions of diffused fields with respect to the bare action agree with those of bare fields with respect to the effective action, where the diffused field obeys a generalized diffusion equation determined by the cutoff function and the seed action and agrees with the bare field at the initial time.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptaa175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ptep/ptaa175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了重整化群与扩散方程之间的关系。考虑了包含任意截断函数和任意二次种子作用的标量场的精确重整化群方程。推广Sonoda和Suzuki的结果,我们发现扩散场关于裸作用的相关函数和裸场关于有效作用的相关函数是一致的,其中扩散场服从由截止函数和种子作用决定的广义扩散方程,并且在初始时刻与裸场一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The renormalization group and the diffusion equation
We study relationship between renormalization group and diffusion equation. We consider the exact renormalization group equation for a scalar field that includes an arbitrary cutoff function and an arbitrary quadratic seed action. As a generalization of the result obtained by Sonoda and Suzuki, we find that the correlation functions of diffused fields with respect to the bare action agree with those of bare fields with respect to the effective action, where the diffused field obeys a generalized diffusion equation determined by the cutoff function and the seed action and agrees with the bare field at the initial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信