基于平均增益模型的鸽类优化器运行时分析

Zhang Yushan, Huang Han, Hao Zhifeng, Hong Zhou
{"title":"基于平均增益模型的鸽类优化器运行时分析","authors":"Zhang Yushan, Huang Han, Hao Zhifeng, Hong Zhou","doi":"10.1109/CEC.2019.8790262","DOIUrl":null,"url":null,"abstract":"The pigeon-inspired optimization (PIO) algorithm is a novel swarm intelligence optimizer inspired by the homing behaviors of pigeons. Although PIO has demonstrated effectiveness and superiority in numerous fields, there are few results about the theoretical foundation of PIO. This paper employs the average gain model to estimate the upper bound for the expected first hitting time of PIO in continuous optimization. The case study and experiment result indicate that our theoretical analysis is applicable to the general case where the population size and problem size are both larger than 1, which is close to the practical situation.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"33 1","pages":"1165-1169"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Runtime Analysis of Pigeon-Inspired Optimizer Based on Average Gain Model\",\"authors\":\"Zhang Yushan, Huang Han, Hao Zhifeng, Hong Zhou\",\"doi\":\"10.1109/CEC.2019.8790262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pigeon-inspired optimization (PIO) algorithm is a novel swarm intelligence optimizer inspired by the homing behaviors of pigeons. Although PIO has demonstrated effectiveness and superiority in numerous fields, there are few results about the theoretical foundation of PIO. This paper employs the average gain model to estimate the upper bound for the expected first hitting time of PIO in continuous optimization. The case study and experiment result indicate that our theoretical analysis is applicable to the general case where the population size and problem size are both larger than 1, which is close to the practical situation.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"33 1\",\"pages\":\"1165-1169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2019.8790262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2019.8790262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

鸽子启发优化算法是受鸽子归巢行为启发而提出的一种新型群智能优化算法。虽然信息流在许多领域都显示出了有效性和优越性,但关于信息流的理论基础研究却很少。本文采用平均增益模型估计了连续优化中PIO期望首次命中时间的上界。案例研究和实验结果表明,我们的理论分析适用于总体规模和问题规模均大于1的一般情况,接近实际情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Runtime Analysis of Pigeon-Inspired Optimizer Based on Average Gain Model
The pigeon-inspired optimization (PIO) algorithm is a novel swarm intelligence optimizer inspired by the homing behaviors of pigeons. Although PIO has demonstrated effectiveness and superiority in numerous fields, there are few results about the theoretical foundation of PIO. This paper employs the average gain model to estimate the upper bound for the expected first hitting time of PIO in continuous optimization. The case study and experiment result indicate that our theoretical analysis is applicable to the general case where the population size and problem size are both larger than 1, which is close to the practical situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信