基于数据依赖性的双精度浮点乘加单元的优化设计

Gongqiong Li, Zhaolin Li
{"title":"基于数据依赖性的双精度浮点乘加单元的优化设计","authors":"Gongqiong Li, Zhaolin Li","doi":"10.1109/ICCD.2007.4601918","DOIUrl":null,"url":null,"abstract":"This paper presents a novel double-precision floating-point multiply-add-fused unit, which is implemented in three pipeline stages. The main improvement over the conventional design is data dependence between two consecutive floating-point instructions is considered. In the new design the intermediate computation results of the first floating-point instruction are first pretreated and then fed back to the first stage for being directly used by the second floating-point instruction if the two consecutive floating-point instructions are data dependent. In this way, floating point instructions can be executed directly following their preceding floating-point instructions without being stalled due to data dependence. 11 data dependence cases are accelerated in this paper. The experiments, which are done over four SPEC2000 benchmark programs, show that 25% performance increase can be attained at the cost of 0.27 ns time delay added to the critical path.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"32 1","pages":"311-316"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized design of a double-precision floating-point multiply-add-dused unit for data dependence\",\"authors\":\"Gongqiong Li, Zhaolin Li\",\"doi\":\"10.1109/ICCD.2007.4601918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel double-precision floating-point multiply-add-fused unit, which is implemented in three pipeline stages. The main improvement over the conventional design is data dependence between two consecutive floating-point instructions is considered. In the new design the intermediate computation results of the first floating-point instruction are first pretreated and then fed back to the first stage for being directly used by the second floating-point instruction if the two consecutive floating-point instructions are data dependent. In this way, floating point instructions can be executed directly following their preceding floating-point instructions without being stalled due to data dependence. 11 data dependence cases are accelerated in this paper. The experiments, which are done over four SPEC2000 benchmark programs, show that 25% performance increase can be attained at the cost of 0.27 ns time delay added to the critical path.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"32 1\",\"pages\":\"311-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的双精度浮点乘加融合单元,该单元分三个流水线阶段实现。相对于传统设计的主要改进是考虑了两个连续浮点指令之间的数据依赖性。在新设计中,如果两个连续的浮点指令是数据相关的,则首先对第一个浮点指令的中间计算结果进行预处理,然后反馈到第一级供第二个浮点指令直接使用。这样,浮点指令就可以直接在前面的浮点指令之后执行,而不会因为数据依赖而停滞。本文加速了11种数据依赖情况。在四个SPEC2000基准程序上进行的实验表明,在关键路径上增加0.27 ns的时间延迟可以使性能提高25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized design of a double-precision floating-point multiply-add-dused unit for data dependence
This paper presents a novel double-precision floating-point multiply-add-fused unit, which is implemented in three pipeline stages. The main improvement over the conventional design is data dependence between two consecutive floating-point instructions is considered. In the new design the intermediate computation results of the first floating-point instruction are first pretreated and then fed back to the first stage for being directly used by the second floating-point instruction if the two consecutive floating-point instructions are data dependent. In this way, floating point instructions can be executed directly following their preceding floating-point instructions without being stalled due to data dependence. 11 data dependence cases are accelerated in this paper. The experiments, which are done over four SPEC2000 benchmark programs, show that 25% performance increase can be attained at the cost of 0.27 ns time delay added to the critical path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信