陶瓷远红外辐射对水氢键及其相关化学物理性质的影响

Leung Tk, Lin Sl, Yang Ts, Yang Jc, Lin Ys
{"title":"陶瓷远红外辐射对水氢键及其相关化学物理性质的影响","authors":"Leung Tk, Lin Sl, Yang Ts, Yang Jc, Lin Ys","doi":"10.4172/2157-7587.1000174","DOIUrl":null,"url":null,"abstract":"The property of water is highly related to the earth's environment and climate change. The fundamental dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray (cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, Franz cells,  High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. The weakening of water hydrogen bonds caused by cFIR  irradiation is correspondent with our previous medicalbiological studies on cFIR.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen Bonding and its Related Chemo-physical Properties\",\"authors\":\"Leung Tk, Lin Sl, Yang Ts, Yang Jc, Lin Ys\",\"doi\":\"10.4172/2157-7587.1000174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The property of water is highly related to the earth's environment and climate change. The fundamental dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray (cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, Franz cells,  High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. The weakening of water hydrogen bonds caused by cFIR  irradiation is correspondent with our previous medicalbiological studies on cFIR.\",\"PeriodicalId\":17605,\"journal\":{\"name\":\"Journal of Waste Water Treatment and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Waste Water Treatment and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7587.1000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Waste Water Treatment and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7587.1000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

水的性质与地球环境和气候变化密切相关。水的基本动力学过程包括氢键的形成和断裂。到目前为止,人们对这一动态过程仍然知之甚少。研究了陶瓷远红外(cFIR)辐照后水的氢键减弱及其对水理化性质的影响。本研究利用傅里叶变换红外光谱(FT-IR)研究了cfr辐照水的氢键变化;此外,通过毛细管粘度计、气相色谱(GC)、差示扫描量热法(DSC)、接触角、Franz细胞、高效液相色谱(HPLC)和毛细管电泳分析,评价了其物理特性,如粘度、挥发性、水结晶温度、表面张力、扩散、过氧化氢解离、固体颗粒溶解度、醋酸pH变化等。cFIR处理后的水粘度和表面张力(接触角)下降,但固体颗粒的溶解度、过氧化氢解离、水结晶温度和醋酸酸度增加。cFIR辐照引起的水氢键的减弱与我们以往关于cFIR的医学生物学研究一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen Bonding and its Related Chemo-physical Properties
The property of water is highly related to the earth's environment and climate change. The fundamental dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray (cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, Franz cells,  High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. The weakening of water hydrogen bonds caused by cFIR  irradiation is correspondent with our previous medicalbiological studies on cFIR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信