一类分类在人脸图像分析中的应用

V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"一类分类在人脸图像分析中的应用","authors":"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/ICIP.2016.7532637","DOIUrl":null,"url":null,"abstract":"In this paper, we apply One-Class Classification methods in facial image analysis problems. We consider the cases where the available training data information originates from one class, or one of the available classes is of high importance. We propose a novel extension of the One-Class Extreme Learning Machines algorithm aiming at minimizing both the training error and the data dispersion and consider solutions that generate decision functions in the ELM space, as well as in ELM spaces of arbitrary dimensionality. We evaluate the performance in publicly available datasets. The proposed method compares favourably to other state-of-the-art choices.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"1644-1648"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"One class classification applied in facial image analysis\",\"authors\":\"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas\",\"doi\":\"10.1109/ICIP.2016.7532637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply One-Class Classification methods in facial image analysis problems. We consider the cases where the available training data information originates from one class, or one of the available classes is of high importance. We propose a novel extension of the One-Class Extreme Learning Machines algorithm aiming at minimizing both the training error and the data dispersion and consider solutions that generate decision functions in the ELM space, as well as in ELM spaces of arbitrary dimensionality. We evaluate the performance in publicly available datasets. The proposed method compares favourably to other state-of-the-art choices.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"1644-1648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文将一类分类方法应用于人脸图像分析问题。我们考虑可用的训练数据信息来自一个类的情况,或者其中一个可用的类是非常重要的。我们提出了一类极限学习机算法的新扩展,旨在最小化训练误差和数据分散,并考虑在ELM空间以及任意维的ELM空间中生成决策函数的解决方案。我们在公开可用的数据集中评估性能。所提出的方法比其他最先进的选择更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One class classification applied in facial image analysis
In this paper, we apply One-Class Classification methods in facial image analysis problems. We consider the cases where the available training data information originates from one class, or one of the available classes is of high importance. We propose a novel extension of the One-Class Extreme Learning Machines algorithm aiming at minimizing both the training error and the data dispersion and consider solutions that generate decision functions in the ELM space, as well as in ELM spaces of arbitrary dimensionality. We evaluate the performance in publicly available datasets. The proposed method compares favourably to other state-of-the-art choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信