{"title":"一种基于椭圆曲线的RSA新变体","authors":"Maher Boudabra, Abderrahmane Nitaj","doi":"10.3390/cryptography7030037","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems and can be used for both signature and encryption. We study the security of the new scheme and show that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover, we show that the private exponents can be much smaller than the ordinary exponents in RSA and KMOV, which makes the decryption phase in the new scheme more efficient.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"2 1","pages":"1299"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New RSA Variant Based on Elliptic Curves\",\"authors\":\"Maher Boudabra, Abderrahmane Nitaj\",\"doi\":\"10.3390/cryptography7030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems and can be used for both signature and encryption. We study the security of the new scheme and show that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover, we show that the private exponents can be much smaller than the ordinary exponents in RSA and KMOV, which makes the decryption phase in the new scheme more efficient.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"2 1\",\"pages\":\"1299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography7030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we propose a new scheme based on ephemeral elliptic curves over a finite ring with an RSA modulus. The new scheme is a variant of both the RSA and the KMOV cryptosystems and can be used for both signature and encryption. We study the security of the new scheme and show that it is immune to factorization attacks, discrete-logarithm-problem attacks, sum-of-two-squares attacks, sum-of-four-squares attacks, isomorphism attacks, and homomorphism attacks. Moreover, we show that the private exponents can be much smaller than the ordinary exponents in RSA and KMOV, which makes the decryption phase in the new scheme more efficient.