一类具有非线性记忆的自由边界问题的爆破与渐近性质

IF 0.3 4区 数学 Q4 MATHEMATICS, APPLIED
Jiahui Huang
{"title":"一类具有非线性记忆的自由边界问题的爆破与渐近性质","authors":"Jiahui Huang","doi":"10.4208/jpde.v33.n3.5","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a reaction-diffusion equation ut−duxx = au+ ∫ t 0 u p(x,τ)dτ+k(x) with double free boundaries. We study blowup phenomena in finite time and asymptotic behavior of time-global solutions. Our results show if ∫ h0 −h0 k(x)ψ1dx is large enough, then the blowup occurs. Meanwhile we also prove when T∗<+∞, the solution must blow up in finite time. On the other hand, we prove that the solution decays at an exponential rate and the two free boundaries converge to a finite limit provided the initial datum is small sufficiently. AMS Subject Classifications: 35K20, 35R35, 92B05 Chinese Library Classifications: O175","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"2 1","pages":"249-260"},"PeriodicalIF":0.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup and Asymptotic Behavior of a Free Boundary Problem with a Nonlinear Memory\",\"authors\":\"Jiahui Huang\",\"doi\":\"10.4208/jpde.v33.n3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a reaction-diffusion equation ut−duxx = au+ ∫ t 0 u p(x,τ)dτ+k(x) with double free boundaries. We study blowup phenomena in finite time and asymptotic behavior of time-global solutions. Our results show if ∫ h0 −h0 k(x)ψ1dx is large enough, then the blowup occurs. Meanwhile we also prove when T∗<+∞, the solution must blow up in finite time. On the other hand, we prove that the solution decays at an exponential rate and the two free boundaries converge to a finite limit provided the initial datum is small sufficiently. AMS Subject Classifications: 35K20, 35R35, 92B05 Chinese Library Classifications: O175\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"2 1\",\"pages\":\"249-260\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v33.n3.5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v33.n3.5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有双自由边界的反应扩散方程ut - duxx = au+∫t 0 u p(x,τ)dτ+k(x)。研究了有限时间内的爆破现象和时间全局解的渐近性质。我们的结果表明,如果∫h0−h0 k(x)ψ1dx足够大,则会发生爆炸。同时也证明了当T * <+∞时,解在有限时间内必须爆破。另一方面,我们证明了在初始基准足够小的情况下,解以指数速率衰减,两个自由边界收敛于有限极限。AMS学科分类:35K20, 35R35, 92B05中文图书馆分类:O175
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blowup and Asymptotic Behavior of a Free Boundary Problem with a Nonlinear Memory
In this paper, we investigate a reaction-diffusion equation ut−duxx = au+ ∫ t 0 u p(x,τ)dτ+k(x) with double free boundaries. We study blowup phenomena in finite time and asymptotic behavior of time-global solutions. Our results show if ∫ h0 −h0 k(x)ψ1dx is large enough, then the blowup occurs. Meanwhile we also prove when T∗<+∞, the solution must blow up in finite time. On the other hand, we prove that the solution decays at an exponential rate and the two free boundaries converge to a finite limit provided the initial datum is small sufficiently. AMS Subject Classifications: 35K20, 35R35, 92B05 Chinese Library Classifications: O175
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
551
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信