T. Bures, V. Matena, R. Mirandola, Lorenzo Pagliari, Catia Trubiani
{"title":"智能信息物理系统的性能建模","authors":"T. Bures, V. Matena, R. Mirandola, Lorenzo Pagliari, Catia Trubiani","doi":"10.1145/3185768.3186306","DOIUrl":null,"url":null,"abstract":"Context: the dynamic nature of complex Cyber-Physical Systems (CPS) introduces new research challenges since they need to smartly self-adapt to changing situations in their environment. This triggers the usage of methodologies that keep track of changes and raise alarms whether extra-functional requirements (e.g., safety, reliability, performance) are violated. Objective: this paper investigates the usage of software performance engineering techniques as support to provide a model-based performance evaluation of smart CPS. The goal is to understand at which extent performance models, specifically Queueing Networks (QN), are suitable to represent these dynamic scenarios. Method and Results: we evaluate the performance characteristics of a smart parking application where cars need to communicate with hot-spots to find an empty spot to park. Through QN we are able to efficiently derive performance predictions that are compared with long-run simulations, and the relative error of model-based analysis results is no larger than 10% when transient or congestion states are discarded. Conclusion: the usage of performance models is promising in this domain and our goal is to experiment further performance models in other CPS case studies to assess their effectiveness.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Performance Modelling of Smart Cyber-Physical Systems\",\"authors\":\"T. Bures, V. Matena, R. Mirandola, Lorenzo Pagliari, Catia Trubiani\",\"doi\":\"10.1145/3185768.3186306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: the dynamic nature of complex Cyber-Physical Systems (CPS) introduces new research challenges since they need to smartly self-adapt to changing situations in their environment. This triggers the usage of methodologies that keep track of changes and raise alarms whether extra-functional requirements (e.g., safety, reliability, performance) are violated. Objective: this paper investigates the usage of software performance engineering techniques as support to provide a model-based performance evaluation of smart CPS. The goal is to understand at which extent performance models, specifically Queueing Networks (QN), are suitable to represent these dynamic scenarios. Method and Results: we evaluate the performance characteristics of a smart parking application where cars need to communicate with hot-spots to find an empty spot to park. Through QN we are able to efficiently derive performance predictions that are compared with long-run simulations, and the relative error of model-based analysis results is no larger than 10% when transient or congestion states are discarded. Conclusion: the usage of performance models is promising in this domain and our goal is to experiment further performance models in other CPS case studies to assess their effectiveness.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3185768.3186306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Modelling of Smart Cyber-Physical Systems
Context: the dynamic nature of complex Cyber-Physical Systems (CPS) introduces new research challenges since they need to smartly self-adapt to changing situations in their environment. This triggers the usage of methodologies that keep track of changes and raise alarms whether extra-functional requirements (e.g., safety, reliability, performance) are violated. Objective: this paper investigates the usage of software performance engineering techniques as support to provide a model-based performance evaluation of smart CPS. The goal is to understand at which extent performance models, specifically Queueing Networks (QN), are suitable to represent these dynamic scenarios. Method and Results: we evaluate the performance characteristics of a smart parking application where cars need to communicate with hot-spots to find an empty spot to park. Through QN we are able to efficiently derive performance predictions that are compared with long-run simulations, and the relative error of model-based analysis results is no larger than 10% when transient or congestion states are discarded. Conclusion: the usage of performance models is promising in this domain and our goal is to experiment further performance models in other CPS case studies to assess their effectiveness.