QWIRE:量子电路的核心语言

Jennifer Paykin, Robert Rand, S. Zdancewic
{"title":"QWIRE:量子电路的核心语言","authors":"Jennifer Paykin, Robert Rand, S. Zdancewic","doi":"10.1145/3009837.3009894","DOIUrl":null,"url":null,"abstract":"This paper introduces QWIRE (``choir''), a language for defining quantum circuits and an interface for manipulating them inside of an arbitrary classical host language. QWIRE is minimal---it contains only a few primitives---and sound with respect to the physical properties entailed by quantum mechanics. At the same time, QWIRE is expressive and highly modular due to its relationship with the host language, mirroring the QRAM model of computation that places a quantum computer (controlled by circuits) alongside a classical computer (controlled by the host language). We present QWIRE along with its type system and operational semantics, which we prove is safe and strongly normalizing whenever the host language is. We give circuits a denotational semantics in terms of density matrices. Throughout, we investigate examples that demonstrate the expressive power of QWIRE, including extensions to the host language that (1) expose a general analysis framework for circuits, and (2) provide dependent types.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":"{\"title\":\"QWIRE: a core language for quantum circuits\",\"authors\":\"Jennifer Paykin, Robert Rand, S. Zdancewic\",\"doi\":\"10.1145/3009837.3009894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces QWIRE (``choir''), a language for defining quantum circuits and an interface for manipulating them inside of an arbitrary classical host language. QWIRE is minimal---it contains only a few primitives---and sound with respect to the physical properties entailed by quantum mechanics. At the same time, QWIRE is expressive and highly modular due to its relationship with the host language, mirroring the QRAM model of computation that places a quantum computer (controlled by circuits) alongside a classical computer (controlled by the host language). We present QWIRE along with its type system and operational semantics, which we prove is safe and strongly normalizing whenever the host language is. We give circuits a denotational semantics in terms of density matrices. Throughout, we investigate examples that demonstrate the expressive power of QWIRE, including extensions to the host language that (1) expose a general analysis framework for circuits, and (2) provide dependent types.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

摘要

本文介绍了QWIRE (' choir'),一种用于定义量子电路的语言和在任意经典宿主语言中操纵量子电路的接口。QWIRE是最小的——它只包含几个原语——并且相对于量子力学所包含的物理特性是合理的。同时,由于与主语言的关系,QWIRE具有表现力和高度模块化,反映了QRAM计算模型,将量子计算机(由电路控制)与经典计算机(由主语言控制)放在一起。我们介绍了QWIRE及其类型系统和操作语义,我们证明了它是安全的,并且无论宿主语言是什么,它都是强规范化的。我们用密度矩阵给出了电路的指称语义。在整个过程中,我们研究了展示QWIRE表达能力的示例,包括对宿主语言的扩展(1)公开电路的一般分析框架,以及(2)提供依赖类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QWIRE: a core language for quantum circuits
This paper introduces QWIRE (``choir''), a language for defining quantum circuits and an interface for manipulating them inside of an arbitrary classical host language. QWIRE is minimal---it contains only a few primitives---and sound with respect to the physical properties entailed by quantum mechanics. At the same time, QWIRE is expressive and highly modular due to its relationship with the host language, mirroring the QRAM model of computation that places a quantum computer (controlled by circuits) alongside a classical computer (controlled by the host language). We present QWIRE along with its type system and operational semantics, which we prove is safe and strongly normalizing whenever the host language is. We give circuits a denotational semantics in terms of density matrices. Throughout, we investigate examples that demonstrate the expressive power of QWIRE, including extensions to the host language that (1) expose a general analysis framework for circuits, and (2) provide dependent types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信