{"title":"用DOE法对乙酸加氢脱氧工艺因素进行优化","authors":"A. Mashi, M. Rahama","doi":"10.2478/auoc-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports the optimization of process factors using the Taguchi method towards the conversion of acetic acid and ethanol yield during the hydrogenation of acetic acid over 4% Pt/TiO2. The acidity of 4% Pt/TiO2 was characterized using NH3-Temperature Programmed Desorption analysis (NH3-TPD). Afterwards, the effect of temperature on the hydrogenation of acetic acid as an individual feed was investigated. The reaction space explored in the following ranges: temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min−1 using 4% Pt/TiO2, was investigated for the optimization study, while the effect of temperature was studied in a temperature range of 145 to 200 °C. NH3-TPD analysis reveals that moderate acidity was suitable for the hydrogenation of acetic acid to ethanol. It was also found that 200 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 for acetic acid conversion, and 160 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 were the optimum conditions for ethanol production. In addition, the selectivity of ethanol was favored at lower temperatures which decreases with increasing temperature.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":"90 1","pages":"38 - 43"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid\",\"authors\":\"A. Mashi, M. Rahama\",\"doi\":\"10.2478/auoc-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper reports the optimization of process factors using the Taguchi method towards the conversion of acetic acid and ethanol yield during the hydrogenation of acetic acid over 4% Pt/TiO2. The acidity of 4% Pt/TiO2 was characterized using NH3-Temperature Programmed Desorption analysis (NH3-TPD). Afterwards, the effect of temperature on the hydrogenation of acetic acid as an individual feed was investigated. The reaction space explored in the following ranges: temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min−1 using 4% Pt/TiO2, was investigated for the optimization study, while the effect of temperature was studied in a temperature range of 145 to 200 °C. NH3-TPD analysis reveals that moderate acidity was suitable for the hydrogenation of acetic acid to ethanol. It was also found that 200 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 for acetic acid conversion, and 160 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 were the optimum conditions for ethanol production. In addition, the selectivity of ethanol was favored at lower temperatures which decreases with increasing temperature.\",\"PeriodicalId\":19641,\"journal\":{\"name\":\"Ovidius University Annals of Chemistry\",\"volume\":\"90 1\",\"pages\":\"38 - 43\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ovidius University Annals of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/auoc-2020-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid
Abstract This paper reports the optimization of process factors using the Taguchi method towards the conversion of acetic acid and ethanol yield during the hydrogenation of acetic acid over 4% Pt/TiO2. The acidity of 4% Pt/TiO2 was characterized using NH3-Temperature Programmed Desorption analysis (NH3-TPD). Afterwards, the effect of temperature on the hydrogenation of acetic acid as an individual feed was investigated. The reaction space explored in the following ranges: temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min−1 using 4% Pt/TiO2, was investigated for the optimization study, while the effect of temperature was studied in a temperature range of 145 to 200 °C. NH3-TPD analysis reveals that moderate acidity was suitable for the hydrogenation of acetic acid to ethanol. It was also found that 200 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 for acetic acid conversion, and 160 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 were the optimum conditions for ethanol production. In addition, the selectivity of ethanol was favored at lower temperatures which decreases with increasing temperature.