Omar S. Abu Abed, Srilikha Mulkala, Israa Sharif, Asma M. Abdin, A. Elkordy
{"title":"无冻干原脂质体用于疏水药物(肉桂嗪)口服缓释的比较研究","authors":"Omar S. Abu Abed, Srilikha Mulkala, Israa Sharif, Asma M. Abdin, A. Elkordy","doi":"10.1515/pthp-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Cinnarizine is used for the treatment of vestibular disorders. However, its poor solubility limits its clinical uses due to many challenges. Liposomes were utilised to improve the release profile of many poorly soluble drugs. However, liposomes face many stability challenges during the storage period. This study aims to develop proliposomes designed for the oral delivery of cinnarizine with enhanced stability characteristics. Methods Three cinnarizine entrapping Proliposomal formulations were prepared with different ingredients and compared with their liposomal counterparts. Both vesicular approaches were characterised for their particle size, encapsulation efficiency, drug release and stability. Results The proliposomes were superior to liposomes in their stability and release profiles. Although no significant changes were noticed between the encapsulation efficiency percentage of the liposomal and proliposomal formulations on the day of preparation, storing the formulations for two weeks ended up with significant leakage of the drug from liposomes (p < 0.05) due to stability issues, but not in proliposomes. Moreover, the proliposomes released 100% of cinnarizine throughout the dissolution experiment in gastric fluid in comparison with the total released drug of 70% from the liposomes. Conclusions Proliposomes provided a successful approach to deliver lipophilic drugs orally to improve their pharmacokinetic properties by converting their crystalline nature into more amorphous agents.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyophilization-free proliposomes for sustained release oral delivery of hydrophobic drug (cinnarazine): a comparative study\",\"authors\":\"Omar S. Abu Abed, Srilikha Mulkala, Israa Sharif, Asma M. Abdin, A. Elkordy\",\"doi\":\"10.1515/pthp-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Cinnarizine is used for the treatment of vestibular disorders. However, its poor solubility limits its clinical uses due to many challenges. Liposomes were utilised to improve the release profile of many poorly soluble drugs. However, liposomes face many stability challenges during the storage period. This study aims to develop proliposomes designed for the oral delivery of cinnarizine with enhanced stability characteristics. Methods Three cinnarizine entrapping Proliposomal formulations were prepared with different ingredients and compared with their liposomal counterparts. Both vesicular approaches were characterised for their particle size, encapsulation efficiency, drug release and stability. Results The proliposomes were superior to liposomes in their stability and release profiles. Although no significant changes were noticed between the encapsulation efficiency percentage of the liposomal and proliposomal formulations on the day of preparation, storing the formulations for two weeks ended up with significant leakage of the drug from liposomes (p < 0.05) due to stability issues, but not in proliposomes. Moreover, the proliposomes released 100% of cinnarizine throughout the dissolution experiment in gastric fluid in comparison with the total released drug of 70% from the liposomes. Conclusions Proliposomes provided a successful approach to deliver lipophilic drugs orally to improve their pharmacokinetic properties by converting their crystalline nature into more amorphous agents.\",\"PeriodicalId\":19802,\"journal\":{\"name\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pthp-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pthp-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lyophilization-free proliposomes for sustained release oral delivery of hydrophobic drug (cinnarazine): a comparative study
Abstract Objectives Cinnarizine is used for the treatment of vestibular disorders. However, its poor solubility limits its clinical uses due to many challenges. Liposomes were utilised to improve the release profile of many poorly soluble drugs. However, liposomes face many stability challenges during the storage period. This study aims to develop proliposomes designed for the oral delivery of cinnarizine with enhanced stability characteristics. Methods Three cinnarizine entrapping Proliposomal formulations were prepared with different ingredients and compared with their liposomal counterparts. Both vesicular approaches were characterised for their particle size, encapsulation efficiency, drug release and stability. Results The proliposomes were superior to liposomes in their stability and release profiles. Although no significant changes were noticed between the encapsulation efficiency percentage of the liposomal and proliposomal formulations on the day of preparation, storing the formulations for two weeks ended up with significant leakage of the drug from liposomes (p < 0.05) due to stability issues, but not in proliposomes. Moreover, the proliposomes released 100% of cinnarizine throughout the dissolution experiment in gastric fluid in comparison with the total released drug of 70% from the liposomes. Conclusions Proliposomes provided a successful approach to deliver lipophilic drugs orally to improve their pharmacokinetic properties by converting their crystalline nature into more amorphous agents.