补丁描述的稀疏量化

X. Boix, Michael Gygli, G. Roig, L. Gool
{"title":"补丁描述的稀疏量化","authors":"X. Boix, Michael Gygli, G. Roig, L. Gool","doi":"10.1109/CVPR.2013.366","DOIUrl":null,"url":null,"abstract":"The representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the application, as well as the desired compromise between accuracy and efficiency. We present a novel formulation of patch description, that serves such issues well. Sparse quantization lies at its heart. This allows for efficient encodings, leading to powerful, novel binary descriptors, yet also to the generalization of existing descriptors like SIFT or BRIEF. We demonstrate the capabilities of our formulation for both key point matching and image classification. Our binary descriptors achieve state-of-the-art results for two key point matching benchmarks, namely those by Brown and Mikolajczyk. For image classification, we propose new descriptors, that perform similar to SIFT on Caltech101 and PASCAL VOC07.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"46 1","pages":"2842-2849"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Sparse Quantization for Patch Description\",\"authors\":\"X. Boix, Michael Gygli, G. Roig, L. Gool\",\"doi\":\"10.1109/CVPR.2013.366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the application, as well as the desired compromise between accuracy and efficiency. We present a novel formulation of patch description, that serves such issues well. Sparse quantization lies at its heart. This allows for efficient encodings, leading to powerful, novel binary descriptors, yet also to the generalization of existing descriptors like SIFT or BRIEF. We demonstrate the capabilities of our formulation for both key point matching and image classification. Our binary descriptors achieve state-of-the-art results for two key point matching benchmarks, namely those by Brown and Mikolajczyk. For image classification, we propose new descriptors, that perform similar to SIFT on Caltech101 and PASCAL VOC07.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"46 1\",\"pages\":\"2842-2849\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

局部图像块的表示对于许多视觉任务的良好性能和效率至关重要。补丁描述符被设计成根据不同的应用,以及在准确性和效率之间期望的折衷来概括不同的变化。我们提出了一种新的补丁描述公式,可以很好地解决这些问题。稀疏量化是其核心。这允许有效的编码,从而产生强大的、新颖的二进制描述符,同时也实现了现有描述符(如SIFT或BRIEF)的一般化。我们演示了我们的公式在关键点匹配和图像分类方面的能力。我们的二进制描述符实现了两个关键点匹配基准的最先进的结果,即Brown和Mikolajczyk的那些。对于图像分类,我们提出了新的描述符,其性能与Caltech101和PASCAL VOC07上的SIFT相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Quantization for Patch Description
The representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the application, as well as the desired compromise between accuracy and efficiency. We present a novel formulation of patch description, that serves such issues well. Sparse quantization lies at its heart. This allows for efficient encodings, leading to powerful, novel binary descriptors, yet also to the generalization of existing descriptors like SIFT or BRIEF. We demonstrate the capabilities of our formulation for both key point matching and image classification. Our binary descriptors achieve state-of-the-art results for two key point matching benchmarks, namely those by Brown and Mikolajczyk. For image classification, we propose new descriptors, that perform similar to SIFT on Caltech101 and PASCAL VOC07.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信