O. O. Olanipekun, A. O. Ogunbayo, Rahamon Adisa Bello
{"title":"多孔介质中多组分基板命运的建模与数值求解","authors":"O. O. Olanipekun, A. O. Ogunbayo, Rahamon Adisa Bello","doi":"10.30492/IJCCE.2021.129911.4202","DOIUrl":null,"url":null,"abstract":"A mathematical model was proposed to appropriately describe the fate of multicomponent substrates in porous media especially soil. The model utilised appropriate biodegradation kinetic expressions that better describe the consumption or degradation rate of the substrate. The Equation, with the second and third type boundary conditions in non-dimensionalised form was solved using the Finite Volume method and simulated in the Matlab environment. An experiment, using a 5 cm (inside diameter) x 60 cm (height) glass column packed with severally autoclaved soil spiked with 2 % substrate (a mixture of hexadecane, heneicosane, 1-methylnaphthalene, 2- methylnaphthalene and 1, 3-dimethylnapthalene) and a consortium of organisms (Providential rettgeri, Streptococcus salivarius, Trichoderma harzianum, Aspergillus flavipes, and Candida famata) was set up to validate the model. The result showed that the model describes the fate of each component within the multicomponent substrate. It also indicates that both Peclet and Thiele numbers affect the biodegradation of the substrate. It was observed that small Peclet number should be allowed for effective biodegradation of the substrate. The model was validated with data obtained for an experiment where a mixture of hydrocarbons was degraded with a mixed culture of microorganisms. The results of the experiment were well described by the model indicating that the model can be used to predict compositions of components of a mixture during biodegradation.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"109 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Numerical Solution of the Fate of Multicomponent Substrate in Porous Media\",\"authors\":\"O. O. Olanipekun, A. O. Ogunbayo, Rahamon Adisa Bello\",\"doi\":\"10.30492/IJCCE.2021.129911.4202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model was proposed to appropriately describe the fate of multicomponent substrates in porous media especially soil. The model utilised appropriate biodegradation kinetic expressions that better describe the consumption or degradation rate of the substrate. The Equation, with the second and third type boundary conditions in non-dimensionalised form was solved using the Finite Volume method and simulated in the Matlab environment. An experiment, using a 5 cm (inside diameter) x 60 cm (height) glass column packed with severally autoclaved soil spiked with 2 % substrate (a mixture of hexadecane, heneicosane, 1-methylnaphthalene, 2- methylnaphthalene and 1, 3-dimethylnapthalene) and a consortium of organisms (Providential rettgeri, Streptococcus salivarius, Trichoderma harzianum, Aspergillus flavipes, and Candida famata) was set up to validate the model. The result showed that the model describes the fate of each component within the multicomponent substrate. It also indicates that both Peclet and Thiele numbers affect the biodegradation of the substrate. It was observed that small Peclet number should be allowed for effective biodegradation of the substrate. The model was validated with data obtained for an experiment where a mixture of hydrocarbons was degraded with a mixed culture of microorganisms. The results of the experiment were well described by the model indicating that the model can be used to predict compositions of components of a mixture during biodegradation.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.129911.4202\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.129911.4202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling and Numerical Solution of the Fate of Multicomponent Substrate in Porous Media
A mathematical model was proposed to appropriately describe the fate of multicomponent substrates in porous media especially soil. The model utilised appropriate biodegradation kinetic expressions that better describe the consumption or degradation rate of the substrate. The Equation, with the second and third type boundary conditions in non-dimensionalised form was solved using the Finite Volume method and simulated in the Matlab environment. An experiment, using a 5 cm (inside diameter) x 60 cm (height) glass column packed with severally autoclaved soil spiked with 2 % substrate (a mixture of hexadecane, heneicosane, 1-methylnaphthalene, 2- methylnaphthalene and 1, 3-dimethylnapthalene) and a consortium of organisms (Providential rettgeri, Streptococcus salivarius, Trichoderma harzianum, Aspergillus flavipes, and Candida famata) was set up to validate the model. The result showed that the model describes the fate of each component within the multicomponent substrate. It also indicates that both Peclet and Thiele numbers affect the biodegradation of the substrate. It was observed that small Peclet number should be allowed for effective biodegradation of the substrate. The model was validated with data obtained for an experiment where a mixture of hydrocarbons was degraded with a mixed culture of microorganisms. The results of the experiment were well described by the model indicating that the model can be used to predict compositions of components of a mixture during biodegradation.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.