左约束半群上的零

Baddi-Ul Zaman
{"title":"左约束半群上的零","authors":"Baddi-Ul Zaman","doi":"10.48129/kjs.16921","DOIUrl":null,"url":null,"abstract":"In this article, we give the notion of left restriction meet-semigroup, and establish some results regarding atomistic left restriction semigroups. Then we discuss decompositions of (non-zero) semigroups with zero by proving a decomposition theorem. We also show that every atomistic left restriction semigroup S can be decomposed as an orthogonal sum of atomistic left restriction semigroups Ni, where each summand Ni is an irreducible ideal of S. Finally, properties of the summands Ni, when S embeds in some PT X the partial transformation monoid on a set X, are investigated.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On left restriction semigroups with zero\",\"authors\":\"Baddi-Ul Zaman\",\"doi\":\"10.48129/kjs.16921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we give the notion of left restriction meet-semigroup, and establish some results regarding atomistic left restriction semigroups. Then we discuss decompositions of (non-zero) semigroups with zero by proving a decomposition theorem. We also show that every atomistic left restriction semigroup S can be decomposed as an orthogonal sum of atomistic left restriction semigroups Ni, where each summand Ni is an irreducible ideal of S. Finally, properties of the summands Ni, when S embeds in some PT X the partial transformation monoid on a set X, are investigated.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.16921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.16921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了左限制满足半群的概念,并建立了关于原子左限制半群的一些结果。然后通过证明一个分解定理,讨论了有零的(非零)半群的分解问题。我们还证明了每个原子左限制半群S可以分解为原子左限制半群Ni的正交和,其中每个和项Ni是S的不可约理想。最后,研究了当S嵌入集合X上的部分变换单阵时,和项Ni的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On left restriction semigroups with zero
In this article, we give the notion of left restriction meet-semigroup, and establish some results regarding atomistic left restriction semigroups. Then we discuss decompositions of (non-zero) semigroups with zero by proving a decomposition theorem. We also show that every atomistic left restriction semigroup S can be decomposed as an orthogonal sum of atomistic left restriction semigroups Ni, where each summand Ni is an irreducible ideal of S. Finally, properties of the summands Ni, when S embeds in some PT X the partial transformation monoid on a set X, are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信