人工智能驱动的简化建模:从多个领域汲取的经验和教训。

Q4 Biochemistry, Genetics and Molecular Biology
Sagar Sunkle, Krati Saxena, Ashwini Patil, Vinay Kulkarni
{"title":"人工智能驱动的简化建模:从多个领域汲取的经验和教训。","authors":"Sagar Sunkle, Krati Saxena, Ashwini Patil, Vinay Kulkarni","doi":"10.1007/s10270-022-00982-6","DOIUrl":null,"url":null,"abstract":"<p><p>Model-driven technologies (MD*), considered beneficial through abstraction and automation, have not enjoyed widespread adoption in the industry. In keeping with the recent trends, using AI techniques might help the benefits of MD* outweigh their costs. Although the modeling community has started using AI techniques, it is, in our opinion, quite limited and requires a change in perspective. We provide such a perspective through five industrial case studies where we use AI techniques in different modeling activities. We discuss our experiences and lessons learned, in some cases evolving purely modeling solutions with AI techniques, and in others considering the AI aids from the beginning. We believe that these case studies can help the researchers and practitioners make sense of various artifacts and data available to them and use applicable AI techniques to enhance suitable modeling activities.</p>","PeriodicalId":8683,"journal":{"name":"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine","volume":"1 1","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857636/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-driven streamlined modeling: experiences and lessons learned from multiple domains.\",\"authors\":\"Sagar Sunkle, Krati Saxena, Ashwini Patil, Vinay Kulkarni\",\"doi\":\"10.1007/s10270-022-00982-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Model-driven technologies (MD*), considered beneficial through abstraction and automation, have not enjoyed widespread adoption in the industry. In keeping with the recent trends, using AI techniques might help the benefits of MD* outweigh their costs. Although the modeling community has started using AI techniques, it is, in our opinion, quite limited and requires a change in perspective. We provide such a perspective through five industrial case studies where we use AI techniques in different modeling activities. We discuss our experiences and lessons learned, in some cases evolving purely modeling solutions with AI techniques, and in others considering the AI aids from the beginning. We believe that these case studies can help the researchers and practitioners make sense of various artifacts and data available to them and use applicable AI techniques to enhance suitable modeling activities.</p>\",\"PeriodicalId\":8683,\"journal\":{\"name\":\"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine\",\"volume\":\"1 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857636/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10270-022-00982-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10270-022-00982-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

模型驱动技术(MD*)通过抽象化和自动化被认为是有益的,但并未在业界得到广泛应用。根据最近的趋势,使用人工智能技术可能会使 MD* 的收益大于成本。虽然建模界已经开始使用人工智能技术,但我们认为,这种技术还很有限,需要改变视角。我们通过五个行业案例研究提供了这样的视角,在这些案例研究中,我们在不同的建模活动中使用了人工智能技术。我们讨论了我们的经验和教训,在某些情况下,我们利用人工智能技术发展了纯粹的建模解决方案,而在另一些情况下,我们从一开始就考虑了人工智能辅助工具。我们相信,这些案例研究可以帮助研究人员和从业人员理解他们可以获得的各种人工制品和数据,并使用适用的人工智能技术来增强合适的建模活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven streamlined modeling: experiences and lessons learned from multiple domains.

Model-driven technologies (MD*), considered beneficial through abstraction and automation, have not enjoyed widespread adoption in the industry. In keeping with the recent trends, using AI techniques might help the benefits of MD* outweigh their costs. Although the modeling community has started using AI techniques, it is, in our opinion, quite limited and requires a change in perspective. We provide such a perspective through five industrial case studies where we use AI techniques in different modeling activities. We discuss our experiences and lessons learned, in some cases evolving purely modeling solutions with AI techniques, and in others considering the AI aids from the beginning. We believe that these case studies can help the researchers and practitioners make sense of various artifacts and data available to them and use applicable AI techniques to enhance suitable modeling activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine
Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
0.60
自引率
0.00%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信