白噪声代数重归一化方的Bogolyubov自同态

Pub Date : 2021-12-29 DOI:10.1142/s0219025721500235
H. Rebei, Slaheddine Wannes
{"title":"白噪声代数重归一化方的Bogolyubov自同态","authors":"H. Rebei, Slaheddine Wannes","doi":"10.1142/s0219025721500235","DOIUrl":null,"url":null,"abstract":"We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Bogolyubov endomorphisms of the renormalized square of white noise algebra\",\"authors\":\"H. Rebei, Slaheddine Wannes\",\"doi\":\"10.1142/s0219025721500235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025721500235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025721500235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了与白噪声代数(rswn -代数)的再归一化平方相关的正则对易关系(CCR)的Bogolyubov自同态的二次模拟。我们关注这些自同态的一个子类的结构:它们中的每一个都是由一个四重体(公式:见文)唯一确定的,其中[公式:见文]是从一个测试函数空间[公式:见文]到自身的线性变换,而[公式:见文]在[公式:见文]上是反线性的,[公式:见文]是实数。确切地说,我们证明了[公式:见文]和[公式:见文]是由模[公式:见文]的两个任意复值Borel函数和[公式:见文]的两个映射唯一地决定的。在[公式:见文]和[公式:见文]的一些附加解析条件下,我们发现只有两个等价的Bogolyubov自同态,其中一类对应于[公式:见文],另一类对应于[公式:见文]。最后,我们通过在一维和多维情况下建立一些例子来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Bogolyubov endomorphisms of the renormalized square of white noise algebra
We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信