{"title":"基于飞轮储能的太阳能电动汽车充电站自适应能量管理策略","authors":"S. Jithin, T. Rajeev","doi":"10.13052/dgaej2156-3306.38213","DOIUrl":null,"url":null,"abstract":"The large-scale integration of solar photovoltaic systems and electric vehicles into power systems result in technical challenges due to the volatile nature of the generation and electric vehicle load. The paper presents an energy-storage supported adaptive DC-link voltage regulation based energy management strategy for improving hybrid AC/DC microgrid stability. The proposed volatility based control approach improves hybrid microgrid stability under volatile electric vehicle loading and renewable energy fluctuations. The adaptive energy management strategy limits the overstress on flywheel energy storage depending on the flywheel SoC profile. Different load profiles and source intermittency are considered to analyze the effectiveness of the proposed strategy. The combined control strategy of the interlinking converter and flywheel energy storage in power exchange mode operation and independent mode operation achieve energy balance with the change in solar irradiation and the addition/disconnection of electric vehicles. In addition, real-time experiments are performed to validate the proposed energy management strategy under various volatile conditions. The hybrid AC/DC microgrid with proposed energy management strategy provided a frequency improvement of 0.44% and voltage improvement of 7.5%.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flywheel Energy Storage Supported Adaptive Energy Management Strategy for Solar-powered Electric Vehicle Charging Station\",\"authors\":\"S. Jithin, T. Rajeev\",\"doi\":\"10.13052/dgaej2156-3306.38213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large-scale integration of solar photovoltaic systems and electric vehicles into power systems result in technical challenges due to the volatile nature of the generation and electric vehicle load. The paper presents an energy-storage supported adaptive DC-link voltage regulation based energy management strategy for improving hybrid AC/DC microgrid stability. The proposed volatility based control approach improves hybrid microgrid stability under volatile electric vehicle loading and renewable energy fluctuations. The adaptive energy management strategy limits the overstress on flywheel energy storage depending on the flywheel SoC profile. Different load profiles and source intermittency are considered to analyze the effectiveness of the proposed strategy. The combined control strategy of the interlinking converter and flywheel energy storage in power exchange mode operation and independent mode operation achieve energy balance with the change in solar irradiation and the addition/disconnection of electric vehicles. In addition, real-time experiments are performed to validate the proposed energy management strategy under various volatile conditions. The hybrid AC/DC microgrid with proposed energy management strategy provided a frequency improvement of 0.44% and voltage improvement of 7.5%.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.38213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flywheel Energy Storage Supported Adaptive Energy Management Strategy for Solar-powered Electric Vehicle Charging Station
The large-scale integration of solar photovoltaic systems and electric vehicles into power systems result in technical challenges due to the volatile nature of the generation and electric vehicle load. The paper presents an energy-storage supported adaptive DC-link voltage regulation based energy management strategy for improving hybrid AC/DC microgrid stability. The proposed volatility based control approach improves hybrid microgrid stability under volatile electric vehicle loading and renewable energy fluctuations. The adaptive energy management strategy limits the overstress on flywheel energy storage depending on the flywheel SoC profile. Different load profiles and source intermittency are considered to analyze the effectiveness of the proposed strategy. The combined control strategy of the interlinking converter and flywheel energy storage in power exchange mode operation and independent mode operation achieve energy balance with the change in solar irradiation and the addition/disconnection of electric vehicles. In addition, real-time experiments are performed to validate the proposed energy management strategy under various volatile conditions. The hybrid AC/DC microgrid with proposed energy management strategy provided a frequency improvement of 0.44% and voltage improvement of 7.5%.