{"title":"一种新型棘轮凸轮无级变速系统的建模与理论分析","authors":"Amjad Al-Hamood , Hazim Jamalia , Amer Imran , Oday Abdullah , Adolfo Senatore , Hakan Kaleli","doi":"10.1016/j.crme.2019.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>An infinitely variable transmission (IVT) is a system that allows for a continuous (non-discrete) variation (including zero) in transmission ratio between two rotating elements. In this paper, a novel ratcheting-type IVT mechanism is presented and its geometrical design and kinematic analysis are studied in details. The proposed system contains two identical units. Each unit includes a cam with a follower, oscillatory slotted links pivoted at a shaft that can be moved vertically by a hydraulic ram (alterable transmission ratio), and a grooved wheel with an actuating rod. The input rotational motion is converted through each unit to an oscillatory angular motion of controlled amplitude. This resulting motion is rectified using a ratchet to get a unidirectional output rotational motion. Therefore, the system output motion will have a different velocity and acceleration than those of the system input. The kinematic analysis revealed that the transmission ratio can be varied continuously in a range from zero to infinity. The analysis also showed that, for particular transmission ratios, the system gives uniform output (angular velocity and acceleration) for a corresponding uniform input.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 12","pages":"Pages 891-902"},"PeriodicalIF":1.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.10.005","citationCount":"6","resultStr":"{\"title\":\"Modeling and theoretical analysis of a novel ratcheting-type cam-based infinitely variable transmission system\",\"authors\":\"Amjad Al-Hamood , Hazim Jamalia , Amer Imran , Oday Abdullah , Adolfo Senatore , Hakan Kaleli\",\"doi\":\"10.1016/j.crme.2019.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An infinitely variable transmission (IVT) is a system that allows for a continuous (non-discrete) variation (including zero) in transmission ratio between two rotating elements. In this paper, a novel ratcheting-type IVT mechanism is presented and its geometrical design and kinematic analysis are studied in details. The proposed system contains two identical units. Each unit includes a cam with a follower, oscillatory slotted links pivoted at a shaft that can be moved vertically by a hydraulic ram (alterable transmission ratio), and a grooved wheel with an actuating rod. The input rotational motion is converted through each unit to an oscillatory angular motion of controlled amplitude. This resulting motion is rectified using a ratchet to get a unidirectional output rotational motion. Therefore, the system output motion will have a different velocity and acceleration than those of the system input. The kinematic analysis revealed that the transmission ratio can be varied continuously in a range from zero to infinity. The analysis also showed that, for particular transmission ratios, the system gives uniform output (angular velocity and acceleration) for a corresponding uniform input.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 12\",\"pages\":\"Pages 891-902\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.10.005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301573\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Modeling and theoretical analysis of a novel ratcheting-type cam-based infinitely variable transmission system
An infinitely variable transmission (IVT) is a system that allows for a continuous (non-discrete) variation (including zero) in transmission ratio between two rotating elements. In this paper, a novel ratcheting-type IVT mechanism is presented and its geometrical design and kinematic analysis are studied in details. The proposed system contains two identical units. Each unit includes a cam with a follower, oscillatory slotted links pivoted at a shaft that can be moved vertically by a hydraulic ram (alterable transmission ratio), and a grooved wheel with an actuating rod. The input rotational motion is converted through each unit to an oscillatory angular motion of controlled amplitude. This resulting motion is rectified using a ratchet to get a unidirectional output rotational motion. Therefore, the system output motion will have a different velocity and acceleration than those of the system input. The kinematic analysis revealed that the transmission ratio can be varied continuously in a range from zero to infinity. The analysis also showed that, for particular transmission ratios, the system gives uniform output (angular velocity and acceleration) for a corresponding uniform input.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.