用计算机方法构建肺炎克雷伯菌多表位疫苗

D. Wonggo, M. Wahjudi
{"title":"用计算机方法构建肺炎克雷伯菌多表位疫苗","authors":"D. Wonggo, M. Wahjudi","doi":"10.21705/mcbs.v7i2.343","DOIUrl":null,"url":null,"abstract":"Background: Klebsiella pneumoniae is one of the bacteria that causes pneumonia infection. Even though the number of pneumonia cases is relatively high and has become a global problem, there is still no vaccine available to prevent this disease. This study was aimed to design a multi-epitope vaccine design through an in silico approach, against K. pneumoniae.Materials and method: Vaccine candidate was constructed based on proteins of K. pneumoniae. These proteins were analyzed to identify the antigens sequence for multi-epitope vaccine design. The constructed vaccine was predicted for allergenicity, toxicity, population coverage, and its physicochemical properties. The vaccine structure was then docked with the toll like receptor 2 (TLR2) molecule to show the interaction. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a vector using SnapGene.Results: The vaccine was 567 amino acids long, consisting of Cholera Toxin Subunit B as an adjuvant, 6 B-cell epitopes, 11 cytotoxic T-cell epitopes, and 10 helper T-cell epitopes connected with the appropriate linker. Epitopes analysis showed that the vaccine will be a non-toxic, has high antigenicity, but non-allergenic. The vaccine was predicted to be stable, hydrophilic, and had a low risk of triggering autoimmune response. The vaccine molecule was compatible to humans TLR2 molecule. Furthermore, visualization of the candidate vaccine protein on pET-28a showed that the vaccine protein might be expressed correctly.Conclusion: The construction of multi-epitope vaccine has been developed, which might be a good vaccine candidate, containing 6 B-cell epitopes, 11 CTL epitopes, and 10 HTL epitopes. The construct may help scientists to experimentally formulate multi-epitope vaccine against K. pneumoniae in the future.Keywords: in silico, Klebsiella pneumoniae, multi-epitope, vaccine ","PeriodicalId":53387,"journal":{"name":"MCBS Molecular and Cellular Biomedical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Construction of A Multi-epitope Vaccine Against Klebsiella pneumoniae Using in silico Approach\",\"authors\":\"D. Wonggo, M. Wahjudi\",\"doi\":\"10.21705/mcbs.v7i2.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Klebsiella pneumoniae is one of the bacteria that causes pneumonia infection. Even though the number of pneumonia cases is relatively high and has become a global problem, there is still no vaccine available to prevent this disease. This study was aimed to design a multi-epitope vaccine design through an in silico approach, against K. pneumoniae.Materials and method: Vaccine candidate was constructed based on proteins of K. pneumoniae. These proteins were analyzed to identify the antigens sequence for multi-epitope vaccine design. The constructed vaccine was predicted for allergenicity, toxicity, population coverage, and its physicochemical properties. The vaccine structure was then docked with the toll like receptor 2 (TLR2) molecule to show the interaction. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a vector using SnapGene.Results: The vaccine was 567 amino acids long, consisting of Cholera Toxin Subunit B as an adjuvant, 6 B-cell epitopes, 11 cytotoxic T-cell epitopes, and 10 helper T-cell epitopes connected with the appropriate linker. Epitopes analysis showed that the vaccine will be a non-toxic, has high antigenicity, but non-allergenic. The vaccine was predicted to be stable, hydrophilic, and had a low risk of triggering autoimmune response. The vaccine molecule was compatible to humans TLR2 molecule. Furthermore, visualization of the candidate vaccine protein on pET-28a showed that the vaccine protein might be expressed correctly.Conclusion: The construction of multi-epitope vaccine has been developed, which might be a good vaccine candidate, containing 6 B-cell epitopes, 11 CTL epitopes, and 10 HTL epitopes. The construct may help scientists to experimentally formulate multi-epitope vaccine against K. pneumoniae in the future.Keywords: in silico, Klebsiella pneumoniae, multi-epitope, vaccine \",\"PeriodicalId\":53387,\"journal\":{\"name\":\"MCBS Molecular and Cellular Biomedical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MCBS Molecular and Cellular Biomedical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21705/mcbs.v7i2.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MCBS Molecular and Cellular Biomedical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21705/mcbs.v7i2.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:肺炎克雷伯菌是引起肺炎感染的细菌之一。尽管肺炎病例的数量相对较高,并已成为一个全球性问题,但仍然没有可用的疫苗来预防这种疾病。本研究旨在通过计算机方法设计一种多表位疫苗设计,以对抗肺炎克雷伯菌。材料与方法:以肺炎克雷伯菌蛋白为基础构建候选疫苗。对这些蛋白进行分析,确定抗原序列,用于设计多表位疫苗。对构建的疫苗进行了致敏性、毒性、人群覆盖率和理化性质的预测。然后将疫苗结构与toll样受体2 (TLR2)分子对接以显示相互作用。构建的疫苗利用SnapGene在pET-28a载体上进行表达分析和克隆。结果:该疫苗全长567个氨基酸,包括作为佐剂的霍乱毒素B亚基、6个B细胞表位、11个细胞毒性t细胞表位和10个与适当连接体连接的辅助t细胞表位。表位分析表明,该疫苗无毒,具有较高的抗原性,但无致敏性。该疫苗被认为是稳定的、亲水的,并且触发自身免疫反应的风险很低。该疫苗分子与人TLR2分子兼容。此外,候选疫苗蛋白在pET-28a上的可视化显示疫苗蛋白可能正确表达。结论:已构建出含有6个b细胞表位、11个CTL表位和10个HTL表位的多表位疫苗,可能是一种较好的候选疫苗。该结构可为今后研制肺炎克雷伯菌多表位疫苗提供实验依据。关键词:硅;肺炎克雷伯菌;多表位
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Construction of A Multi-epitope Vaccine Against Klebsiella pneumoniae Using in silico Approach
Background: Klebsiella pneumoniae is one of the bacteria that causes pneumonia infection. Even though the number of pneumonia cases is relatively high and has become a global problem, there is still no vaccine available to prevent this disease. This study was aimed to design a multi-epitope vaccine design through an in silico approach, against K. pneumoniae.Materials and method: Vaccine candidate was constructed based on proteins of K. pneumoniae. These proteins were analyzed to identify the antigens sequence for multi-epitope vaccine design. The constructed vaccine was predicted for allergenicity, toxicity, population coverage, and its physicochemical properties. The vaccine structure was then docked with the toll like receptor 2 (TLR2) molecule to show the interaction. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a vector using SnapGene.Results: The vaccine was 567 amino acids long, consisting of Cholera Toxin Subunit B as an adjuvant, 6 B-cell epitopes, 11 cytotoxic T-cell epitopes, and 10 helper T-cell epitopes connected with the appropriate linker. Epitopes analysis showed that the vaccine will be a non-toxic, has high antigenicity, but non-allergenic. The vaccine was predicted to be stable, hydrophilic, and had a low risk of triggering autoimmune response. The vaccine molecule was compatible to humans TLR2 molecule. Furthermore, visualization of the candidate vaccine protein on pET-28a showed that the vaccine protein might be expressed correctly.Conclusion: The construction of multi-epitope vaccine has been developed, which might be a good vaccine candidate, containing 6 B-cell epitopes, 11 CTL epitopes, and 10 HTL epitopes. The construct may help scientists to experimentally formulate multi-epitope vaccine against K. pneumoniae in the future.Keywords: in silico, Klebsiella pneumoniae, multi-epitope, vaccine 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信