组合参数化谱

V. Braunack-Mayer
{"title":"组合参数化谱","authors":"V. Braunack-Mayer","doi":"10.2140/AGT.2021.21.801","DOIUrl":null,"url":null,"abstract":"We obtain combinatorial model categories of parametrised spectra, together with systems of base change Quillen adjunctions associated to maps of parameter spaces. We work with simplicial objects and use Hovey's sequential and symmetric stabilisation machines. By means of a Grothendieck construction for model categories, we produce combinatorial model categories controlling the totality of parametrised stable homotopy theory. The global model category of parametrised symmetric spectra is equipped with a symmetric monoidal model structure (the external smash product) inducing pairings in twisted cohomology groups. \nAs an application of our results we prove a tangent prolongation of Simpson's theorem, characterising tangent $\\infty$-categories of presentable $\\infty$-categories as accessible localisations of $\\infty$-categories of presheaves of parametrised spectra. Applying these results to the homotopy theory of smooth $\\infty$-stacks produces well-behaved (symmetric monoidal) model categories of smooth parametrised spectra. These models provide a concrete foundation for studying twisted differential cohomology, incorporating previous work of Bunke and Nikolaus.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combinatorial parametrised spectra\",\"authors\":\"V. Braunack-Mayer\",\"doi\":\"10.2140/AGT.2021.21.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain combinatorial model categories of parametrised spectra, together with systems of base change Quillen adjunctions associated to maps of parameter spaces. We work with simplicial objects and use Hovey's sequential and symmetric stabilisation machines. By means of a Grothendieck construction for model categories, we produce combinatorial model categories controlling the totality of parametrised stable homotopy theory. The global model category of parametrised symmetric spectra is equipped with a symmetric monoidal model structure (the external smash product) inducing pairings in twisted cohomology groups. \\nAs an application of our results we prove a tangent prolongation of Simpson's theorem, characterising tangent $\\\\infty$-categories of presentable $\\\\infty$-categories as accessible localisations of $\\\\infty$-categories of presheaves of parametrised spectra. Applying these results to the homotopy theory of smooth $\\\\infty$-stacks produces well-behaved (symmetric monoidal) model categories of smooth parametrised spectra. These models provide a concrete foundation for studying twisted differential cohomology, incorporating previous work of Bunke and Nikolaus.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AGT.2021.21.801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2021.21.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们得到了参数化谱的组合模型范畴,以及与参数空间映射相关的基变Quillen共轭系统。我们使用简单的对象,并使用Hovey的顺序和对称稳定机。利用模型范畴的Grothendieck构造,得到了控制参数化稳定同伦理论总体的组合模型范畴。参数化对称谱的全局模型范畴在扭曲上同调群中具有诱导配对的对称单轴模型结构(外粉碎积)。作为我们的结果的一个应用,我们证明了辛普森定理的切线推广,将切线$\infty$ -可呈现的类别$\infty$ -类别表征为$\infty$的可访问局部化-参数化光谱的预束类别。将这些结果应用到光滑$\infty$ -堆的同伦理论中,得到了光滑参数化光谱的良好(对称单轴)模型类别。这些模型结合了Bunke和Nikolaus的研究成果,为研究扭曲微分上同提供了具体的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial parametrised spectra
We obtain combinatorial model categories of parametrised spectra, together with systems of base change Quillen adjunctions associated to maps of parameter spaces. We work with simplicial objects and use Hovey's sequential and symmetric stabilisation machines. By means of a Grothendieck construction for model categories, we produce combinatorial model categories controlling the totality of parametrised stable homotopy theory. The global model category of parametrised symmetric spectra is equipped with a symmetric monoidal model structure (the external smash product) inducing pairings in twisted cohomology groups. As an application of our results we prove a tangent prolongation of Simpson's theorem, characterising tangent $\infty$-categories of presentable $\infty$-categories as accessible localisations of $\infty$-categories of presheaves of parametrised spectra. Applying these results to the homotopy theory of smooth $\infty$-stacks produces well-behaved (symmetric monoidal) model categories of smooth parametrised spectra. These models provide a concrete foundation for studying twisted differential cohomology, incorporating previous work of Bunke and Nikolaus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信