{"title":"一类从Lebesgue空间到调和Bergman-Besov或加权Bloch空间的积分算子","authors":"Ö. Doğan","doi":"10.15672/HUJMS.768123","DOIUrl":null,"url":null,"abstract":"We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\\beta}$ or weighted Bloch Spaces $b^{\\infty}_{\\beta} $, for $1\\leq p\\leq\\infty$, $1\\leq q -1$ when $q<\\infty$ and $\\beta\\geq 0$ when $q=\\infty$ of Dogan (A Class of Integral Operators Induced by Harmonic Bergman-Besov kernels on Lebesgue Classes, preprint, 2020) by mapping the operators into these spaces instead of the Lebesgue classes.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces\",\"authors\":\"Ö. Doğan\",\"doi\":\"10.15672/HUJMS.768123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\\\\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\\\\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\\\\beta}$ or weighted Bloch Spaces $b^{\\\\infty}_{\\\\beta} $, for $1\\\\leq p\\\\leq\\\\infty$, $1\\\\leq q -1$ when $q<\\\\infty$ and $\\\\beta\\\\geq 0$ when $q=\\\\infty$ of Dogan (A Class of Integral Operators Induced by Harmonic Bergman-Besov kernels on Lebesgue Classes, preprint, 2020) by mapping the operators into these spaces instead of the Lebesgue classes.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15672/HUJMS.768123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15672/HUJMS.768123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了在$\mathbb{R}^{n}$的单位球上由调和Bergman-Besov核诱导的一类两参数加权积分算子,并精确地描述了那些从Lebesgue空间$L^{p}_{\alpha}$入调和Bergman-Besov $b^{q}_{\beta}$或加权Bloch空间$b^{\infty}_{\beta} $的算子,对于$1\leq p\leq\infty$,通过将算子映射到这些空间而不是映射到Lebesgue类上的调和Bergman-Besov核诱导的一类积分算子$1\leq q -1$ when $q<\infty$和$\beta\geq 0$ when $q=\infty$。
A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces
We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\beta}$ or weighted Bloch Spaces $b^{\infty}_{\beta} $, for $1\leq p\leq\infty$, $1\leq q -1$ when $q<\infty$ and $\beta\geq 0$ when $q=\infty$ of Dogan (A Class of Integral Operators Induced by Harmonic Bergman-Besov kernels on Lebesgue Classes, preprint, 2020) by mapping the operators into these spaces instead of the Lebesgue classes.