β - laguerre系综极端特征值的中等偏差

Pub Date : 2020-04-01 DOI:10.1142/S2010326320500033
Lei Chen, Shaochen Wang
{"title":"β - laguerre系综极端特征值的中等偏差","authors":"Lei Chen, Shaochen Wang","doi":"10.1142/S2010326320500033","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles\",\"authors\":\"Lei Chen, Shaochen Wang\",\"doi\":\"10.1142/S2010326320500033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

令[公式:见文]分别为带参数的beta-Laguerre系综的最大和最小特征值[公式:见文]。对于固定的[公式:见文],在[公式:见文]远大于[公式:见文]的情况下,利用渐近展开技术,得到了[公式:见文]和[公式:见文]的完全中等偏差原理。有趣的是,在这种情况下,我们的结果表明,极端特征值的指数尾渐近是高斯型分布尾,而不是特雷西-威多姆型分布尾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles
Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信