{"title":"β - laguerre系综极端特征值的中等偏差","authors":"Lei Chen, Shaochen Wang","doi":"10.1142/S2010326320500033","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles\",\"authors\":\"Lei Chen, Shaochen Wang\",\"doi\":\"10.1142/S2010326320500033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles
Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.