由不同拓扑结构的手性层构建共消旋铀酰铬酸盐的形成

O. Siidra, E. Nazarchuk, S. Bocharov, W. Depmeier, A. Zadoya
{"title":"由不同拓扑结构的手性层构建共消旋铀酰铬酸盐的形成","authors":"O. Siidra, E. Nazarchuk, S. Bocharov, W. Depmeier, A. Zadoya","doi":"10.1107/S205252061601917X","DOIUrl":null,"url":null,"abstract":"Four new inorganic uranyl chromates were obtained by evaporation and hydrothermal methods: [(CH3)2NH2]2[(UO2)2(CrO4)3(H2O)](H2O) (1), K(Rb0.6K0.4)[(UO2)2(CrO4)3(H2O)](H2O)3 (2) [(CH3)3CNH3]2[(UO2)2(CrO4)3H2O] (3), [(CH3)2NH2]4[(UO2)2(CrO4)3H2O]2(H2O) (4). Their structures are based on two-dimensional chiral or achiral units with the composition [(UO2)2(CrO4)3(H2O)]2− and two types of topologies (A or/and B). The structural architecture of (4) is unique amongst all known uranyl-based structures, and unusual among hybrid organic/inorganic structures in general as it contains layers of identical composition, but of different topology. The unique structural configurations and non-centrosymmetry in (1) and (4) is governed by selective formation of hydrogen bonding rather than by the formation of hydrophobic and hydrophilic zones in the organic interlayer. It is shown that chiral architectures in uranyl systems may form from achiral building units as observed in (3) and (4). This is somewhat analogous to certain organic compounds, where achiral molecules are also able to form chiral layers. Within the concept of such an interpretation the structure of (3) can then be described as a racemate consisting of two A and A′ chiral layers. In a similar approach the structure of (4) can be interpreted as being formed by four chiral layers. Layer pairs AA′ and BB′ can then be considered as racemic pairs and the whole structure is a co-racemate built by a combination of two racemates. Two-stage formation can be suggested for (4).","PeriodicalId":6887,"journal":{"name":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","volume":"26 1","pages":"101-111"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Formation of co-racemic uranyl chromate constructed from chiral layers of different topology\",\"authors\":\"O. Siidra, E. Nazarchuk, S. Bocharov, W. Depmeier, A. Zadoya\",\"doi\":\"10.1107/S205252061601917X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four new inorganic uranyl chromates were obtained by evaporation and hydrothermal methods: [(CH3)2NH2]2[(UO2)2(CrO4)3(H2O)](H2O) (1), K(Rb0.6K0.4)[(UO2)2(CrO4)3(H2O)](H2O)3 (2) [(CH3)3CNH3]2[(UO2)2(CrO4)3H2O] (3), [(CH3)2NH2]4[(UO2)2(CrO4)3H2O]2(H2O) (4). Their structures are based on two-dimensional chiral or achiral units with the composition [(UO2)2(CrO4)3(H2O)]2− and two types of topologies (A or/and B). The structural architecture of (4) is unique amongst all known uranyl-based structures, and unusual among hybrid organic/inorganic structures in general as it contains layers of identical composition, but of different topology. The unique structural configurations and non-centrosymmetry in (1) and (4) is governed by selective formation of hydrogen bonding rather than by the formation of hydrophobic and hydrophilic zones in the organic interlayer. It is shown that chiral architectures in uranyl systems may form from achiral building units as observed in (3) and (4). This is somewhat analogous to certain organic compounds, where achiral molecules are also able to form chiral layers. Within the concept of such an interpretation the structure of (3) can then be described as a racemate consisting of two A and A′ chiral layers. In a similar approach the structure of (4) can be interpreted as being formed by four chiral layers. Layer pairs AA′ and BB′ can then be considered as racemic pairs and the whole structure is a co-racemate built by a combination of two racemates. Two-stage formation can be suggested for (4).\",\"PeriodicalId\":6887,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"volume\":\"26 1\",\"pages\":\"101-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252061601917X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S205252061601917X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通过蒸发和水热法制备了四种新的无机铀酰铬酸盐:[(CH3)2NH2]2[(UO2)2(CrO4)3(H2O)](H2O) (H2O)](H2O) (1), K(Rb0.6K0.4)[(UO2)2(CrO4)3(H2O)](H2O)3 (2) [(CH3)3CNH3]2[(UO2)2(CrO4)3H2O] (3), [(CH3)2NH2]4[(UO2)2(CrO4)3H2O]2(H2O) (4))2(H2O)(4))(4))。它们的结构基于二维手性或非手性单元,组成为[(UO2)2(CrO4)3(H2O)]2−和两种拓扑结构(A或/和B)。(4)的结构结构在所有已知的铀基结构中是独一无二的。这在混合有机/无机结构中是不寻常的,因为它包含相同组成的层,但拓扑结构不同。(1)和(4)中独特的结构构型和非中心对称是由氢键的选择性形成决定的,而不是由有机中间层中疏水和亲水带的形成决定的。研究表明,铀酰体系中的手性结构可以由(3)和(4)中观察到的非手性构建单元形成。这在某种程度上类似于某些有机化合物,其中非手性分子也能够形成手性层。在这种解释的概念中,(3)的结构可以被描述为由两个a和a '手性层组成的外消旋体。在类似的方法中,(4)的结构可以解释为由四个手性层形成。层对AA '和BB '可以被认为是外消旋对,整个结构是由两个外消旋体组合而成的共外消旋体。(4)建议采用两段阵型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of co-racemic uranyl chromate constructed from chiral layers of different topology
Four new inorganic uranyl chromates were obtained by evaporation and hydrothermal methods: [(CH3)2NH2]2[(UO2)2(CrO4)3(H2O)](H2O) (1), K(Rb0.6K0.4)[(UO2)2(CrO4)3(H2O)](H2O)3 (2) [(CH3)3CNH3]2[(UO2)2(CrO4)3H2O] (3), [(CH3)2NH2]4[(UO2)2(CrO4)3H2O]2(H2O) (4). Their structures are based on two-dimensional chiral or achiral units with the composition [(UO2)2(CrO4)3(H2O)]2− and two types of topologies (A or/and B). The structural architecture of (4) is unique amongst all known uranyl-based structures, and unusual among hybrid organic/inorganic structures in general as it contains layers of identical composition, but of different topology. The unique structural configurations and non-centrosymmetry in (1) and (4) is governed by selective formation of hydrogen bonding rather than by the formation of hydrophobic and hydrophilic zones in the organic interlayer. It is shown that chiral architectures in uranyl systems may form from achiral building units as observed in (3) and (4). This is somewhat analogous to certain organic compounds, where achiral molecules are also able to form chiral layers. Within the concept of such an interpretation the structure of (3) can then be described as a racemate consisting of two A and A′ chiral layers. In a similar approach the structure of (4) can be interpreted as being formed by four chiral layers. Layer pairs AA′ and BB′ can then be considered as racemic pairs and the whole structure is a co-racemate built by a combination of two racemates. Two-stage formation can be suggested for (4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信