线路上行走修理工问题的快速4逼近算法

Sergio Luis Pérez-Pérez, Luis Eduardo Urbán Rivero, R. López-Bracho, F. Martínez
{"title":"线路上行走修理工问题的快速4逼近算法","authors":"Sergio Luis Pérez-Pérez, Luis Eduardo Urbán Rivero, R. López-Bracho, F. Martínez","doi":"10.1109/ICEEE.2014.6978272","DOIUrl":null,"url":null,"abstract":"The traveling repairman problem is a scheduling problem in which a repairman is supposed to visit some customers at their locations to perform some jobs. Each customer has a time window during which the repairman is allowed to arrive to perform the jobs. The goal is to maximize the number of visited locations. In this work we deal with a special case in which the locations are on a line, the processing time of each job is zero, and the time window length is unitary. Although the general TRP is NP-Hard, the complexity of this special case remains unknown. We introduce a quadratic 4-approximation algorithm based on the 8-approximation algorithm proposed in 2005 by R. Bar-Yehuda, G. Even, and S. Shahar.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast 4-approximation algorithm for the traveling repairman problem on a line\",\"authors\":\"Sergio Luis Pérez-Pérez, Luis Eduardo Urbán Rivero, R. López-Bracho, F. Martínez\",\"doi\":\"10.1109/ICEEE.2014.6978272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traveling repairman problem is a scheduling problem in which a repairman is supposed to visit some customers at their locations to perform some jobs. Each customer has a time window during which the repairman is allowed to arrive to perform the jobs. The goal is to maximize the number of visited locations. In this work we deal with a special case in which the locations are on a line, the processing time of each job is zero, and the time window length is unitary. Although the general TRP is NP-Hard, the complexity of this special case remains unknown. We introduce a quadratic 4-approximation algorithm based on the 8-approximation algorithm proposed in 2005 by R. Bar-Yehuda, G. Even, and S. Shahar.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

旅行修理工问题是一个安排问题,在这个问题中,修理工应该去客户所在的地方拜访一些客户,完成一些工作。每个客户都有一个时间窗口,在此期间,修理工被允许到达并执行工作。目标是最大化访问地点的数量。在本工作中,我们处理了一种特殊情况,其中位置在一条线上,每个作业的处理时间为零,时间窗口长度是酉的。虽然一般的TRP是NP-Hard,但这种特殊情况的复杂性仍然未知。在R. Bar-Yehuda、G. Even和S. Shahar 2005年提出的8近似算法的基础上,引入了一种二次4近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast 4-approximation algorithm for the traveling repairman problem on a line
The traveling repairman problem is a scheduling problem in which a repairman is supposed to visit some customers at their locations to perform some jobs. Each customer has a time window during which the repairman is allowed to arrive to perform the jobs. The goal is to maximize the number of visited locations. In this work we deal with a special case in which the locations are on a line, the processing time of each job is zero, and the time window length is unitary. Although the general TRP is NP-Hard, the complexity of this special case remains unknown. We introduce a quadratic 4-approximation algorithm based on the 8-approximation algorithm proposed in 2005 by R. Bar-Yehuda, G. Even, and S. Shahar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信