{"title":"月晕和遥远逆行轨道卫星对自主定轨的比较","authors":"Zhaofeng Gao, X. Hou","doi":"10.33012/navi.522","DOIUrl":null,"url":null,"abstract":"is carried out. A factor called dynamic and geometric dilution of precision (DAGDOP) is proposed to simultaneously incorporate influences from the dynamics and geometry of satellite pairs. Based on the DAGDOP, the effect of different observation arcs on the AOD accuracy is investigated. Next, the AOD accuracy of three different types of satellite pairs—halo+halo, DRO+DRO, and halo+DRO—is systematically analyzed. The hybrid halo+DRO type shows the best overall accuracy. Finally, the AOD performance of the hybrid type is verified in a realistic model. Our studies find that the average AOD accuracy of the halo orbit is about 170 meters, and that of the DRO is about 190 meters. The relative time synchronization error of two satellites is less than 30 nanoseconds.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Autonomous Orbit Determination for Satellite Pairs in Lunar Halo and Distant Retrograde Orbits\",\"authors\":\"Zhaofeng Gao, X. Hou\",\"doi\":\"10.33012/navi.522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"is carried out. A factor called dynamic and geometric dilution of precision (DAGDOP) is proposed to simultaneously incorporate influences from the dynamics and geometry of satellite pairs. Based on the DAGDOP, the effect of different observation arcs on the AOD accuracy is investigated. Next, the AOD accuracy of three different types of satellite pairs—halo+halo, DRO+DRO, and halo+DRO—is systematically analyzed. The hybrid halo+DRO type shows the best overall accuracy. Finally, the AOD performance of the hybrid type is verified in a realistic model. Our studies find that the average AOD accuracy of the halo orbit is about 170 meters, and that of the DRO is about 190 meters. The relative time synchronization error of two satellites is less than 30 nanoseconds.\",\"PeriodicalId\":56075,\"journal\":{\"name\":\"Navigation-Journal of the Institute of Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Navigation-Journal of the Institute of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33012/navi.522\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.522","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Comparison of Autonomous Orbit Determination for Satellite Pairs in Lunar Halo and Distant Retrograde Orbits
is carried out. A factor called dynamic and geometric dilution of precision (DAGDOP) is proposed to simultaneously incorporate influences from the dynamics and geometry of satellite pairs. Based on the DAGDOP, the effect of different observation arcs on the AOD accuracy is investigated. Next, the AOD accuracy of three different types of satellite pairs—halo+halo, DRO+DRO, and halo+DRO—is systematically analyzed. The hybrid halo+DRO type shows the best overall accuracy. Finally, the AOD performance of the hybrid type is verified in a realistic model. Our studies find that the average AOD accuracy of the halo orbit is about 170 meters, and that of the DRO is about 190 meters. The relative time synchronization error of two satellites is less than 30 nanoseconds.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.