定义戈伦斯坦环的理想的预期复兴

Pub Date : 2020-07-23 DOI:10.1307/mmj/20206004
Eloísa Grifo, C. Huneke, Vivek Mukundan
{"title":"定义戈伦斯坦环的理想的预期复兴","authors":"Eloísa Grifo, C. Huneke, Vivek Mukundan","doi":"10.1307/mmj/20206004","DOIUrl":null,"url":null,"abstract":"Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Expected Resurgence of Ideals Defining Gorenstein Rings\",\"authors\":\"Eloísa Grifo, C. Huneke, Vivek Mukundan\",\"doi\":\"10.1307/mmj/20206004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20206004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在同一作者之前的工作的基础上,我们证明了定义戈伦斯坦环的某些理想有预期的复苏,因此满足稳定的哈伯恩猜想。在素数特征中,我们可以取正则环上定义Gorenstein环的任何根理想,只要它的符号幂是由具有极大理想的饱和给出的。虽然这一性质不适用于特征$p$的约化,但在$I$的符号Rees代数是诺etherian的附加假设下,我们证明了在等特征$0$中也有类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Expected Resurgence of Ideals Defining Gorenstein Rings
Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信