使用前缀控制的生成器生成少量表格到文本

Yutao Luo, Menghua Lu, Gongshen Liu, Shilin Wang
{"title":"使用前缀控制的生成器生成少量表格到文本","authors":"Yutao Luo, Menghua Lu, Gongshen Liu, Shilin Wang","doi":"10.48550/arXiv.2208.10709","DOIUrl":null,"url":null,"abstract":"Neural table-to-text generation approaches are data-hungry, limiting their adaption for low-resource real-world applications. Previous works mostly resort to Pre-trained Language Models (PLMs) to generate fluent summaries of a table. However, they often contain hallucinated contents due to the uncontrolled nature of PLMs. Moreover, the topological differences between tables and sequences are rarely studied. Last but not least, fine-tuning on PLMs with a handful of instances may lead to over-fitting and catastrophic forgetting. To alleviate these problems, we propose a prompt-based approach, Prefix-Controlled Generator (i.e., PCG), for few-shot table-to-text generation. We prepend a task-specific prefix for a PLM to make the table structure better fit the pre-trained input. In addition, we generate an input-specific prefix to control the factual contents and word order of the generated text. Both automatic and human evaluations on different domains (humans, books and songs) of the Wikibio dataset prove the effectiveness of our approach.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"7 1","pages":"6493-6504"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Few-shot Table-to-text Generation with Prefix-Controlled Generator\",\"authors\":\"Yutao Luo, Menghua Lu, Gongshen Liu, Shilin Wang\",\"doi\":\"10.48550/arXiv.2208.10709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural table-to-text generation approaches are data-hungry, limiting their adaption for low-resource real-world applications. Previous works mostly resort to Pre-trained Language Models (PLMs) to generate fluent summaries of a table. However, they often contain hallucinated contents due to the uncontrolled nature of PLMs. Moreover, the topological differences between tables and sequences are rarely studied. Last but not least, fine-tuning on PLMs with a handful of instances may lead to over-fitting and catastrophic forgetting. To alleviate these problems, we propose a prompt-based approach, Prefix-Controlled Generator (i.e., PCG), for few-shot table-to-text generation. We prepend a task-specific prefix for a PLM to make the table structure better fit the pre-trained input. In addition, we generate an input-specific prefix to control the factual contents and word order of the generated text. Both automatic and human evaluations on different domains (humans, books and songs) of the Wikibio dataset prove the effectiveness of our approach.\",\"PeriodicalId\":91381,\"journal\":{\"name\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"volume\":\"7 1\",\"pages\":\"6493-6504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.10709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.10709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

神经表到文本的生成方法需要大量数据,这限制了它们对低资源的实际应用程序的适应。以前的工作大多采用预训练语言模型(PLMs)来生成表的流畅摘要。然而,由于plm不受控制的性质,它们经常含有幻觉内容。此外,表和序列之间的拓扑差异很少被研究。最后但并非最不重要的是,对plm进行少量实例的微调可能会导致过度拟合和灾难性的遗忘。为了缓解这些问题,我们提出了一种基于提示的方法,前缀控制生成器(即PCG),用于少量表格到文本的生成。我们为PLM添加了一个特定于任务的前缀,以使表结构更好地适应预训练的输入。此外,我们生成一个特定于输入的前缀来控制生成文本的事实内容和词序。对维基生物数据集不同领域(人类、书籍和歌曲)的自动评估和人工评估都证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-shot Table-to-text Generation with Prefix-Controlled Generator
Neural table-to-text generation approaches are data-hungry, limiting their adaption for low-resource real-world applications. Previous works mostly resort to Pre-trained Language Models (PLMs) to generate fluent summaries of a table. However, they often contain hallucinated contents due to the uncontrolled nature of PLMs. Moreover, the topological differences between tables and sequences are rarely studied. Last but not least, fine-tuning on PLMs with a handful of instances may lead to over-fitting and catastrophic forgetting. To alleviate these problems, we propose a prompt-based approach, Prefix-Controlled Generator (i.e., PCG), for few-shot table-to-text generation. We prepend a task-specific prefix for a PLM to make the table structure better fit the pre-trained input. In addition, we generate an input-specific prefix to control the factual contents and word order of the generated text. Both automatic and human evaluations on different domains (humans, books and songs) of the Wikibio dataset prove the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信