{"title":"基于知识的集成随机森林和LSTM模型的云资源利用预测技术","authors":"K. Valarmathi, S. Kanaga Suba Raja","doi":"10.1177/1063293X211032622","DOIUrl":null,"url":null,"abstract":"Future computation of cloud datacenter resource usage is a provoking task due to dynamic and Business Critic workloads. Accurate prediction of cloud resource utilization through historical observation facilitates, effectively aligning the task with resources, estimating the capacity of a cloud server, applying intensive auto-scaling and controlling resource usage. As imprecise prediction of resources leads to either low or high provisioning of resources in the cloud. This paper focuses on solving this problem in a more proactive way. Most of the existing prediction models are based on a mono pattern of workload which is not suitable for handling peculiar workloads. The researchers address this problem by making use of a contemporary model to dynamically analyze the CPU utilization, so as to precisely estimate data center CPU utilization. The proposed design makes use of an Ensemble Random Forest-Long Short Term Memory based deep architectural models for resource estimation. This design preprocesses and trains data based on historical observation. The approach is analyzed by using a real cloud data set. The empirical interpretation depicts that the proposed design outperforms the previous approaches as it bears 30%–60% enhanced accuracy in resource utilization.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"1 1","pages":"396 - 404"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Resource utilization prediction technique in cloud using knowledge based ensemble random forest with LSTM model\",\"authors\":\"K. Valarmathi, S. Kanaga Suba Raja\",\"doi\":\"10.1177/1063293X211032622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future computation of cloud datacenter resource usage is a provoking task due to dynamic and Business Critic workloads. Accurate prediction of cloud resource utilization through historical observation facilitates, effectively aligning the task with resources, estimating the capacity of a cloud server, applying intensive auto-scaling and controlling resource usage. As imprecise prediction of resources leads to either low or high provisioning of resources in the cloud. This paper focuses on solving this problem in a more proactive way. Most of the existing prediction models are based on a mono pattern of workload which is not suitable for handling peculiar workloads. The researchers address this problem by making use of a contemporary model to dynamically analyze the CPU utilization, so as to precisely estimate data center CPU utilization. The proposed design makes use of an Ensemble Random Forest-Long Short Term Memory based deep architectural models for resource estimation. This design preprocesses and trains data based on historical observation. The approach is analyzed by using a real cloud data set. The empirical interpretation depicts that the proposed design outperforms the previous approaches as it bears 30%–60% enhanced accuracy in resource utilization.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"1 1\",\"pages\":\"396 - 404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X211032622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X211032622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resource utilization prediction technique in cloud using knowledge based ensemble random forest with LSTM model
Future computation of cloud datacenter resource usage is a provoking task due to dynamic and Business Critic workloads. Accurate prediction of cloud resource utilization through historical observation facilitates, effectively aligning the task with resources, estimating the capacity of a cloud server, applying intensive auto-scaling and controlling resource usage. As imprecise prediction of resources leads to either low or high provisioning of resources in the cloud. This paper focuses on solving this problem in a more proactive way. Most of the existing prediction models are based on a mono pattern of workload which is not suitable for handling peculiar workloads. The researchers address this problem by making use of a contemporary model to dynamically analyze the CPU utilization, so as to precisely estimate data center CPU utilization. The proposed design makes use of an Ensemble Random Forest-Long Short Term Memory based deep architectural models for resource estimation. This design preprocesses and trains data based on historical observation. The approach is analyzed by using a real cloud data set. The empirical interpretation depicts that the proposed design outperforms the previous approaches as it bears 30%–60% enhanced accuracy in resource utilization.