若干非线性(N+1)维演化方程的行波精确解

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
Jonu Lee, R. Sakthivel
{"title":"若干非线性(N+1)维演化方程的行波精确解","authors":"Jonu Lee, R. Sakthivel","doi":"10.1590/S1807-03022012000200001","DOIUrl":null,"url":null,"abstract":"In this paper, we implement the tanh-coth function method to construct the travelling wave solutions for (N + 1)-dimensional nonlinear evolution equations. Four models, namely the (N + 1)-dimensional generalized Boussinesq equation, (N + 1)-dimensional sine-cosine-Gordon equation, (N + 1)-double sinh-Gordon equation and (N + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. These equations play a very important role in mathematical physics and engineering sciences. The implemented algorithm is quite efficient and is practically well suited for these problems. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious calculations. Mathematical subject classification: 35K58, 35C06, 35A25.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Exact travelling wave solutions for some nonlinear (N+1)-dimensional evolution equations\",\"authors\":\"Jonu Lee, R. Sakthivel\",\"doi\":\"10.1590/S1807-03022012000200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we implement the tanh-coth function method to construct the travelling wave solutions for (N + 1)-dimensional nonlinear evolution equations. Four models, namely the (N + 1)-dimensional generalized Boussinesq equation, (N + 1)-dimensional sine-cosine-Gordon equation, (N + 1)-double sinh-Gordon equation and (N + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. These equations play a very important role in mathematical physics and engineering sciences. The implemented algorithm is quite efficient and is practically well suited for these problems. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious calculations. Mathematical subject classification: 35K58, 35C06, 35A25.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2012-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022012000200001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000200001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 14

摘要

本文采用tanh-coth函数法构造(N + 1)维非线性发展方程的行波解。以(N + 1)维广义Boussinesq方程、(N + 1)维正弦-余弦-戈登方程、(N + 1)-双sinh-Gordon方程和(N + 1)-sinh-余弦-戈登方程四个模型为载体进行分析。这些方程在数学物理和工程科学中起着非常重要的作用。所实现的算法非常有效,实际上很适合这些问题。计算机符号系统,如Maple和Mathematica,使我们能够进行复杂而乏味的计算。数学学科分类:35K58、35C06、35A25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact travelling wave solutions for some nonlinear (N+1)-dimensional evolution equations
In this paper, we implement the tanh-coth function method to construct the travelling wave solutions for (N + 1)-dimensional nonlinear evolution equations. Four models, namely the (N + 1)-dimensional generalized Boussinesq equation, (N + 1)-dimensional sine-cosine-Gordon equation, (N + 1)-double sinh-Gordon equation and (N + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. These equations play a very important role in mathematical physics and engineering sciences. The implemented algorithm is quite efficient and is practically well suited for these problems. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious calculations. Mathematical subject classification: 35K58, 35C06, 35A25.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信