体外海马电生理学和体内定量脑电图显示抗眩晕剂Vertigoheel®在大鼠研究中的强大神经生理作用

W. Dimpfel, B. Seilheimer, L. Schombert
{"title":"体外海马电生理学和体内定量脑电图显示抗眩晕剂Vertigoheel®在大鼠研究中的强大神经生理作用","authors":"W. Dimpfel, B. Seilheimer, L. Schombert","doi":"10.4236/nm.2019.104030","DOIUrl":null,"url":null,"abstract":"Vertigo is a common symptom with impact on daily life. Vertigoheel® (VH-04) has demonstrated to be effective for Vertigo in former studies. This paper aims to investigate the mode of action of the medicinal product VH-04 in the rat brain. In an in vitro study neurophysiological recording from hippocampal slices from adult male Sprague Dawley® rats was performed in order to substantiate a possible direct effect on the brain of VH-04 in different concentrations. In an in vivo cross-over study with 11 Fischer 344® rats, a neurophysiological method was applied to systemically analyse VH-04’s activity in the rat brain. This method combines quantitative assessments of telemetrically transmitted field potentials after drug treatment with subsequent discriminant analysis to classify the compound. The database used for the analysis of classification contained numerous chemicals and medicinal products of different dosages, all tested in the same paradigm, which is continuous wireless monitoring of the EEG of freely moving rats before and after drug intake. Following single stimuli on the Schaffer collaterals in the presence of VH-04 in different concentrations, in vitro responses of pyramidal cells increased depending on the VH-04 concentration (0.25 - 4 ml/L). Results were statistically significant for concentrations above 2.5 ml/L. Long-term potentiation was only marginally affected. Out of several specific glutamate receptor antagonists the effect of VH-04 was only antagonized by AMPA and kainic acid receptor-mediated signalling. Their enhancement indicates better information processing in the hippocampus, a brain structure primarily involved in memory processes. The in vivo characterisation of VH-04-induced changes in EEG-signatures of four brain areas (the frontal cortex (FC), the hippocampus (HC), the striatum (ST) and the reticular formation (RF)) revealed a dose-dependent attenuation of delta, theta, alpha 2 and beta 1 waves. The subsequent discriminant function analysis classified the VH-04 EEG-signature into a subset of cognition-enhancing medicinal products.","PeriodicalId":19381,"journal":{"name":"Neuroscience and Medicine","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In Vitro Hippocampal Electrophysiology and in Vivo Quantitative EEG Revealed Robust Neurophysiological Effects of the Antivertigo-Agent Vertigoheel® in a Rat Study\",\"authors\":\"W. Dimpfel, B. Seilheimer, L. Schombert\",\"doi\":\"10.4236/nm.2019.104030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertigo is a common symptom with impact on daily life. Vertigoheel® (VH-04) has demonstrated to be effective for Vertigo in former studies. This paper aims to investigate the mode of action of the medicinal product VH-04 in the rat brain. In an in vitro study neurophysiological recording from hippocampal slices from adult male Sprague Dawley® rats was performed in order to substantiate a possible direct effect on the brain of VH-04 in different concentrations. In an in vivo cross-over study with 11 Fischer 344® rats, a neurophysiological method was applied to systemically analyse VH-04’s activity in the rat brain. This method combines quantitative assessments of telemetrically transmitted field potentials after drug treatment with subsequent discriminant analysis to classify the compound. The database used for the analysis of classification contained numerous chemicals and medicinal products of different dosages, all tested in the same paradigm, which is continuous wireless monitoring of the EEG of freely moving rats before and after drug intake. Following single stimuli on the Schaffer collaterals in the presence of VH-04 in different concentrations, in vitro responses of pyramidal cells increased depending on the VH-04 concentration (0.25 - 4 ml/L). Results were statistically significant for concentrations above 2.5 ml/L. Long-term potentiation was only marginally affected. Out of several specific glutamate receptor antagonists the effect of VH-04 was only antagonized by AMPA and kainic acid receptor-mediated signalling. Their enhancement indicates better information processing in the hippocampus, a brain structure primarily involved in memory processes. The in vivo characterisation of VH-04-induced changes in EEG-signatures of four brain areas (the frontal cortex (FC), the hippocampus (HC), the striatum (ST) and the reticular formation (RF)) revealed a dose-dependent attenuation of delta, theta, alpha 2 and beta 1 waves. The subsequent discriminant function analysis classified the VH-04 EEG-signature into a subset of cognition-enhancing medicinal products.\",\"PeriodicalId\":19381,\"journal\":{\"name\":\"Neuroscience and Medicine\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/nm.2019.104030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/nm.2019.104030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

眩晕是一种影响日常生活的常见症状。Vertigoheel®(VH-04)在以前的研究中已被证明对眩晕有效。本文旨在研究中药VH-04在大鼠脑内的作用方式。在体外研究中,为了证实不同浓度的VH-04对大脑可能的直接影响,对成年雄性Sprague Dawley®大鼠海马切片进行了神经生理学记录。在11只Fischer 344®大鼠的体内交叉研究中,应用神经生理学方法系统分析了VH-04在大鼠脑中的活性。该方法结合了药物治疗后遥测传输场电位的定量评估和随后的判别分析来对化合物进行分类。用于分类分析的数据库包含了大量不同剂量的化学药品和药品,所有的测试都采用了相同的范式,即对自由活动的大鼠在服药前后的脑电图进行连续无线监测。在不同浓度的VH-04存在下,单次刺激Schaffer络后,锥体细胞的体外反应随VH-04浓度(0.25 - 4 ml/L)的增加而增加。浓度高于2.5 ml/L时,结果具有统计学意义。长时程增强仅受到轻微影响。在几种特异性谷氨酸受体拮抗剂中,VH-04仅被AMPA和kainic酸受体介导的信号通路所拮抗。它们的增强表明海马体的信息处理更好,海马体是主要参与记忆过程的大脑结构。vh -04诱导的四个脑区(额叶皮质(FC)、海马体(HC)、纹状体(ST)和网状结构(RF))脑电图特征的体内表征显示,δ、θ、α 2和β 1波呈剂量依赖性衰减。随后的判别函数分析将VH-04脑电图特征分类为认知增强药物的一个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vitro Hippocampal Electrophysiology and in Vivo Quantitative EEG Revealed Robust Neurophysiological Effects of the Antivertigo-Agent Vertigoheel® in a Rat Study
Vertigo is a common symptom with impact on daily life. Vertigoheel® (VH-04) has demonstrated to be effective for Vertigo in former studies. This paper aims to investigate the mode of action of the medicinal product VH-04 in the rat brain. In an in vitro study neurophysiological recording from hippocampal slices from adult male Sprague Dawley® rats was performed in order to substantiate a possible direct effect on the brain of VH-04 in different concentrations. In an in vivo cross-over study with 11 Fischer 344® rats, a neurophysiological method was applied to systemically analyse VH-04’s activity in the rat brain. This method combines quantitative assessments of telemetrically transmitted field potentials after drug treatment with subsequent discriminant analysis to classify the compound. The database used for the analysis of classification contained numerous chemicals and medicinal products of different dosages, all tested in the same paradigm, which is continuous wireless monitoring of the EEG of freely moving rats before and after drug intake. Following single stimuli on the Schaffer collaterals in the presence of VH-04 in different concentrations, in vitro responses of pyramidal cells increased depending on the VH-04 concentration (0.25 - 4 ml/L). Results were statistically significant for concentrations above 2.5 ml/L. Long-term potentiation was only marginally affected. Out of several specific glutamate receptor antagonists the effect of VH-04 was only antagonized by AMPA and kainic acid receptor-mediated signalling. Their enhancement indicates better information processing in the hippocampus, a brain structure primarily involved in memory processes. The in vivo characterisation of VH-04-induced changes in EEG-signatures of four brain areas (the frontal cortex (FC), the hippocampus (HC), the striatum (ST) and the reticular formation (RF)) revealed a dose-dependent attenuation of delta, theta, alpha 2 and beta 1 waves. The subsequent discriminant function analysis classified the VH-04 EEG-signature into a subset of cognition-enhancing medicinal products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信