{"title":"异质环境下具有空间扩散的多群Seir流行病模型的全局行为","authors":"Pengyan Liu, Hong-Xu Li","doi":"10.34768/amcs-2022-0020","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a multi-group SEIR epidemic model with spatial diffusion, where the model parameters are spatially heterogeneous. The positivity and ultimate boundedness of the solution, as well as the existence of a global attractor of the associated solution semiflow, are established. The definition of the basic reproduction number is given by utilizing the next generation operator approach, whereby threshold-type results on the global dynamics in terms of this number are established. That is, when the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, while if it is greater than one, uniform persistence of this model is proved. Finally, the feasibility of the main theoretical results is shown with the aid of numerical examples for a model with two groups.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"44 1","pages":"271 - 283"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global Behavior of a Multi–Group Seir Epidemic Model with Spatial Diffusion in a Heterogeneous Environment\",\"authors\":\"Pengyan Liu, Hong-Xu Li\",\"doi\":\"10.34768/amcs-2022-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a multi-group SEIR epidemic model with spatial diffusion, where the model parameters are spatially heterogeneous. The positivity and ultimate boundedness of the solution, as well as the existence of a global attractor of the associated solution semiflow, are established. The definition of the basic reproduction number is given by utilizing the next generation operator approach, whereby threshold-type results on the global dynamics in terms of this number are established. That is, when the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, while if it is greater than one, uniform persistence of this model is proved. Finally, the feasibility of the main theoretical results is shown with the aid of numerical examples for a model with two groups.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"44 1\",\"pages\":\"271 - 283\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Global Behavior of a Multi–Group Seir Epidemic Model with Spatial Diffusion in a Heterogeneous Environment
Abstract In this paper, we propose a multi-group SEIR epidemic model with spatial diffusion, where the model parameters are spatially heterogeneous. The positivity and ultimate boundedness of the solution, as well as the existence of a global attractor of the associated solution semiflow, are established. The definition of the basic reproduction number is given by utilizing the next generation operator approach, whereby threshold-type results on the global dynamics in terms of this number are established. That is, when the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, while if it is greater than one, uniform persistence of this model is proved. Finally, the feasibility of the main theoretical results is shown with the aid of numerical examples for a model with two groups.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.