多边形和的欧拉-麦克劳林公式

L. Brandolini, L. Colzani, S. Robins, G. Travaglini
{"title":"多边形和的欧拉-麦克劳林公式","authors":"L. Brandolini, L. Colzani, S. Robins, G. Travaglini","doi":"10.1090/TRAN/8462","DOIUrl":null,"url":null,"abstract":"We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick's theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Euler-MacLaurin formula for polygonal sums\",\"authors\":\"L. Brandolini, L. Colzani, S. Robins, G. Travaglini\",\"doi\":\"10.1090/TRAN/8462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick's theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"2017 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了二重多边形和的一个欧拉-麦克劳林公式,作为一个推论,我们得到了顶点为整数的多边形上光滑函数积分的近似正交公式。我们的欧拉-麦克劳林公式是在匹克定理的精神上,在一个整数多边形的整数点的数量,并涉及加权黎曼和,使用谐波分析的工具。最后,我们还展示了一个经典的技巧,可以追溯到惠更斯和牛顿,来加速这些黎曼和的收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Euler-MacLaurin formula for polygonal sums
We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick's theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信