{"title":"正则对称不定系统的线性和二次优化的内点法","authors":"A. Altman, J. Gondzio","doi":"10.1080/10556789908805754","DOIUrl":null,"url":null,"abstract":"This paper presents linear algebra techniques used in the implementation of an interior point method for solving linear programs and convex quadratic programs with linear constraint. The new regularization techniques for Newton equation system applicable to both symmetric positive definite and symmetric indefinite systems are described. They transform the latter to quasidefinite systems known to be strongly factorizable to a form of Cholesky-like factorization.","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"18 1","pages":"275-302"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization\",\"authors\":\"A. Altman, J. Gondzio\",\"doi\":\"10.1080/10556789908805754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents linear algebra techniques used in the implementation of an interior point method for solving linear programs and convex quadratic programs with linear constraint. The new regularization techniques for Newton equation system applicable to both symmetric positive definite and symmetric indefinite systems are described. They transform the latter to quasidefinite systems known to be strongly factorizable to a form of Cholesky-like factorization.\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"18 1\",\"pages\":\"275-302\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789908805754\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805754","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization
This paper presents linear algebra techniques used in the implementation of an interior point method for solving linear programs and convex quadratic programs with linear constraint. The new regularization techniques for Newton equation system applicable to both symmetric positive definite and symmetric indefinite systems are described. They transform the latter to quasidefinite systems known to be strongly factorizable to a form of Cholesky-like factorization.
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.