图中的最大权({K1,K2},k,l)填充问题

Q4 Medicine
V. Lepin
{"title":"图中的最大权({K1,K2},k,l)填充问题","authors":"V. Lepin","doi":"10.29235/1561-2430-2023-59-2-121-129","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the maximum weight ({K1,K2},k,l)-packing problem in a graph. This problem generalizes a number of well-known problems, for example: maximum induced matching, k-separated matching, connected matching, independent set, dissociating set, k-packing. We show that in the class of cographs, a maximum weight ({K1,K2},k,l)- packing can be computed in O(n + m) time. Let Γ be a class of graphs and Γ* be a class of all simple (with respect to the modular decomposition) induced subgraphs from Γ. It is proven that if the maximum weight ({K1,K2},k,l)-packing problem can be solved in the class of graphs Г* in time O(np ), where p ≥ 2 is a constant, then this problem can be solved in the class of graphs Г in time O(np ). ","PeriodicalId":20584,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus, Medical series","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum weight ({K1,K2},k,l)-packing problem in a graph\",\"authors\":\"V. Lepin\",\"doi\":\"10.29235/1561-2430-2023-59-2-121-129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the maximum weight ({K1,K2},k,l)-packing problem in a graph. This problem generalizes a number of well-known problems, for example: maximum induced matching, k-separated matching, connected matching, independent set, dissociating set, k-packing. We show that in the class of cographs, a maximum weight ({K1,K2},k,l)- packing can be computed in O(n + m) time. Let Γ be a class of graphs and Γ* be a class of all simple (with respect to the modular decomposition) induced subgraphs from Γ. It is proven that if the maximum weight ({K1,K2},k,l)-packing problem can be solved in the class of graphs Г* in time O(np ), where p ≥ 2 is a constant, then this problem can be solved in the class of graphs Г in time O(np ). \",\"PeriodicalId\":20584,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-2430-2023-59-2-121-129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus, Medical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2023-59-2-121-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文研究图的最大权({K1,K2},k,l)填充问题。这个问题推广了一些众所周知的问题,如:最大诱导匹配、k分离匹配、连通匹配、独立集、解离集、k填充。我们证明了在图类中,可以在O(n + m)时间内计算出最大权值({K1,K2},k,l)-填充。设Γ是一个图类,Γ*是一个从Γ导出的所有简单(关于模分解)子图的类。证明了如果最大权值({K1,K2},k,l)-装箱问题能在时间O(np)内解出图类Г*,其中p≥2为常数,则该问题能在时间O(np)内解出图类Г。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximum weight ({K1,K2},k,l)-packing problem in a graph
In this paper, we consider the maximum weight ({K1,K2},k,l)-packing problem in a graph. This problem generalizes a number of well-known problems, for example: maximum induced matching, k-separated matching, connected matching, independent set, dissociating set, k-packing. We show that in the class of cographs, a maximum weight ({K1,K2},k,l)- packing can be computed in O(n + m) time. Let Γ be a class of graphs and Γ* be a class of all simple (with respect to the modular decomposition) induced subgraphs from Γ. It is proven that if the maximum weight ({K1,K2},k,l)-packing problem can be solved in the class of graphs Г* in time O(np ), where p ≥ 2 is a constant, then this problem can be solved in the class of graphs Г in time O(np ). 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信