从非相关分布随机变量得到的样本最大值的通常随机排序

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Longxiang Fang, N. Balakrishnan, Wenyu Huang, Shuai Zhang
{"title":"从非相关分布随机变量得到的样本最大值的通常随机排序","authors":"Longxiang Fang, N. Balakrishnan, Wenyu Huang, Shuai Zhang","doi":"10.1111/stan.12275","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss stochastic comparison of the largest order statistics arising from two sets of dependent distribution‐free random variables with respect to multivariate chain majorization, where the dependency structure can be defined by Archimedean copulas. When a distribution‐free model with possibly two parameter vectors has its matrix of parameters changing to another matrix of parameters in a certain mathematical sense, we obtain the first sample maxima is larger than the second sample maxima with respect to the usual stochastic order, based on certain conditions. Applications of our results for scale proportional reverse hazards model, exponentiated gamma distribution, Gompertz–Makeham distribution, and location‐scale model, are also given. Meanwhile, we provide two numerical examples to illustrate the results established here.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"76 1","pages":"112 - 99"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Usual stochastic ordering of the sample maxima from dependent distribution‐free random variables\",\"authors\":\"Longxiang Fang, N. Balakrishnan, Wenyu Huang, Shuai Zhang\",\"doi\":\"10.1111/stan.12275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss stochastic comparison of the largest order statistics arising from two sets of dependent distribution‐free random variables with respect to multivariate chain majorization, where the dependency structure can be defined by Archimedean copulas. When a distribution‐free model with possibly two parameter vectors has its matrix of parameters changing to another matrix of parameters in a certain mathematical sense, we obtain the first sample maxima is larger than the second sample maxima with respect to the usual stochastic order, based on certain conditions. Applications of our results for scale proportional reverse hazards model, exponentiated gamma distribution, Gompertz–Makeham distribution, and location‐scale model, are also given. Meanwhile, we provide two numerical examples to illustrate the results established here.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"76 1\",\"pages\":\"112 - 99\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12275\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12275","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了由两组无相关分布的随机变量引起的最大阶统计量的随机比较,其中相关结构可由阿基米德copuls定义。当一个可能有两个参数向量的无分布模型的参数矩阵在一定的数学意义上改变为另一个参数矩阵时,我们得到了基于通常随机顺序的第一个样本最大值大于第二个样本最大值,基于某些条件。我们的结果在比例逆向灾害模型、指数伽马分布、Gompertz-Makeham分布和位置尺度模型中的应用也被给出。同时,给出了两个数值算例来说明本文的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Usual stochastic ordering of the sample maxima from dependent distribution‐free random variables
In this paper, we discuss stochastic comparison of the largest order statistics arising from two sets of dependent distribution‐free random variables with respect to multivariate chain majorization, where the dependency structure can be defined by Archimedean copulas. When a distribution‐free model with possibly two parameter vectors has its matrix of parameters changing to another matrix of parameters in a certain mathematical sense, we obtain the first sample maxima is larger than the second sample maxima with respect to the usual stochastic order, based on certain conditions. Applications of our results for scale proportional reverse hazards model, exponentiated gamma distribution, Gompertz–Makeham distribution, and location‐scale model, are also given. Meanwhile, we provide two numerical examples to illustrate the results established here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信