四维完全梯度展开Ricci孤子的曲率估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Cao, Tianbo Liu
{"title":"四维完全梯度展开Ricci孤子的曲率估计","authors":"H. Cao, Tianbo Liu","doi":"10.1515/crelle-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we derive curvature estimates for 4-dimensional complete gradient expanding Ricci solitons with nonnegative Ricci curvature (outside a compact set K). More precisely, we prove that the norm of the curvature tensor Rm {\\mathrm{{Rm}}} and its covariant derivative ∇ ⁡ Rm {\\nabla\\mathrm{{Rm}}} can be bounded by the scalar curvature R by | Rm | ≤ C a ⁢ R a {|\\mathrm{{Rm}}|\\leq C_{a}R^{a}} and | ∇ ⁡ Rm | ≤ C a ⁢ R a {|\\nabla\\mathrm{{Rm}}|\\leq C_{a}R^{a}} (on M ∖ K {M\\setminus K} ), for any 0 ≤ a < 1 {0\\leq a<1} and some constant C a > 0 {C_{a}>0} . Moreover, if the scalar curvature has at most polynomial decay at infinity, then | Rm | ≤ C ⁢ R {|\\mathrm{{Rm}}|\\leq CR} (on M ∖ K {M\\setminus K} ). As an application, it follows that if a 4-dimensional complete gradient expanding Ricci soliton ( M 4 , g , f ) {(M^{4},g,f)} has nonnegative Ricci curvature and finite asymptotic scalar curvature ratio then it has finite asymptotic curvature ratio, hence admits C 1 , α {C^{1,\\alpha}} asymptotic cones at infinity ( 0 < α < 1 ) {(0<\\alpha<1)} according to Chen and Deruelle (2015).[21].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Curvature estimates for 4-dimensional complete gradient expanding Ricci solitons\",\"authors\":\"H. Cao, Tianbo Liu\",\"doi\":\"10.1515/crelle-2022-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we derive curvature estimates for 4-dimensional complete gradient expanding Ricci solitons with nonnegative Ricci curvature (outside a compact set K). More precisely, we prove that the norm of the curvature tensor Rm {\\\\mathrm{{Rm}}} and its covariant derivative ∇ ⁡ Rm {\\\\nabla\\\\mathrm{{Rm}}} can be bounded by the scalar curvature R by | Rm | ≤ C a ⁢ R a {|\\\\mathrm{{Rm}}|\\\\leq C_{a}R^{a}} and | ∇ ⁡ Rm | ≤ C a ⁢ R a {|\\\\nabla\\\\mathrm{{Rm}}|\\\\leq C_{a}R^{a}} (on M ∖ K {M\\\\setminus K} ), for any 0 ≤ a < 1 {0\\\\leq a<1} and some constant C a > 0 {C_{a}>0} . Moreover, if the scalar curvature has at most polynomial decay at infinity, then | Rm | ≤ C ⁢ R {|\\\\mathrm{{Rm}}|\\\\leq CR} (on M ∖ K {M\\\\setminus K} ). As an application, it follows that if a 4-dimensional complete gradient expanding Ricci soliton ( M 4 , g , f ) {(M^{4},g,f)} has nonnegative Ricci curvature and finite asymptotic scalar curvature ratio then it has finite asymptotic curvature ratio, hence admits C 1 , α {C^{1,\\\\alpha}} asymptotic cones at infinity ( 0 < α < 1 ) {(0<\\\\alpha<1)} according to Chen and Deruelle (2015).[21].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文导出了具有非负Ricci曲率的四维完全梯度展开Ricci孤子(紧集K外)的曲率估计。我们证明规范的曲率张量Rm {\ mathrm {{Rm}}}及其协变导数∇⁡Rm{\微分算符\ mathrm {{Rm}}}可以有界的标量曲率R Rm | |≤C⁢R {| \ mathrm {{Rm}} | \ leq C_{一}R ^{一}}和|∇⁡Rm |≤C⁢R{| \微分算符\ mathrm {{Rm}} | \ leq C_{一}R ^{一}}({M \ setminus K}∖K),对于任何0≤< 1 {0 \ leq 0 {C_{一}> 0}。此外,如果标量曲率在无穷远处最多有多项式衰减,则| Rm |≤C¹R {|\ mathm {{Rm}}|\leq CR} (on M∈K {M\ set- K})。作为应用,根据Chen和Deruelle(2015)[21],如果一个四维完全梯度展开Ricci孤子(m4,g,f) {(M^{4},g,f)}具有非负Ricci曲率和有限渐近标量曲率比,则它具有有限渐近曲率比,因此在无穷远处(0< α <1) {(0<\ α <1)}存在c1, α {C^{1,\alpha}}渐近锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature estimates for 4-dimensional complete gradient expanding Ricci solitons
Abstract In this paper, we derive curvature estimates for 4-dimensional complete gradient expanding Ricci solitons with nonnegative Ricci curvature (outside a compact set K). More precisely, we prove that the norm of the curvature tensor Rm {\mathrm{{Rm}}} and its covariant derivative ∇ ⁡ Rm {\nabla\mathrm{{Rm}}} can be bounded by the scalar curvature R by | Rm | ≤ C a ⁢ R a {|\mathrm{{Rm}}|\leq C_{a}R^{a}} and | ∇ ⁡ Rm | ≤ C a ⁢ R a {|\nabla\mathrm{{Rm}}|\leq C_{a}R^{a}} (on M ∖ K {M\setminus K} ), for any 0 ≤ a < 1 {0\leq a<1} and some constant C a > 0 {C_{a}>0} . Moreover, if the scalar curvature has at most polynomial decay at infinity, then | Rm | ≤ C ⁢ R {|\mathrm{{Rm}}|\leq CR} (on M ∖ K {M\setminus K} ). As an application, it follows that if a 4-dimensional complete gradient expanding Ricci soliton ( M 4 , g , f ) {(M^{4},g,f)} has nonnegative Ricci curvature and finite asymptotic scalar curvature ratio then it has finite asymptotic curvature ratio, hence admits C 1 , α {C^{1,\alpha}} asymptotic cones at infinity ( 0 < α < 1 ) {(0<\alpha<1)} according to Chen and Deruelle (2015).[21].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信