{"title":"圆盘上积分分数拉普拉斯扩散反应方程的谱伽辽金方法的尖锐误差估计","authors":"Zhaopeng Hao, Hui-yuan Li, Zhimin Zhang, Zhongqiang Zhang","doi":"10.1090/MCOM/3645","DOIUrl":null,"url":null,"abstract":"We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the \n\n \n \n L\n 2\n \n L^2\n \n\n and energy norm. We present numerical results to verify the theoretical analysis.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2107-2135"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sharp error estimates of a spectral Galerkin method for a diffusion-reaction equation with integral fractional Laplacian on a disk\",\"authors\":\"Zhaopeng Hao, Hui-yuan Li, Zhimin Zhang, Zhongqiang Zhang\",\"doi\":\"10.1090/MCOM/3645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the \\n\\n \\n \\n L\\n 2\\n \\n L^2\\n \\n\\n and energy norm. We present numerical results to verify the theoretical analysis.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"2107-2135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp error estimates of a spectral Galerkin method for a diffusion-reaction equation with integral fractional Laplacian on a disk
We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the
L
2
L^2
and energy norm. We present numerical results to verify the theoretical analysis.