圆盘上积分分数拉普拉斯扩散反应方程的谱伽辽金方法的尖锐误差估计

Zhaopeng Hao, Hui-yuan Li, Zhimin Zhang, Zhongqiang Zhang
{"title":"圆盘上积分分数拉普拉斯扩散反应方程的谱伽辽金方法的尖锐误差估计","authors":"Zhaopeng Hao, Hui-yuan Li, Zhimin Zhang, Zhongqiang Zhang","doi":"10.1090/MCOM/3645","DOIUrl":null,"url":null,"abstract":"We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the \n\n \n \n L\n 2\n \n L^2\n \n\n and energy norm. We present numerical results to verify the theoretical analysis.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2107-2135"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sharp error estimates of a spectral Galerkin method for a diffusion-reaction equation with integral fractional Laplacian on a disk\",\"authors\":\"Zhaopeng Hao, Hui-yuan Li, Zhimin Zhang, Zhongqiang Zhang\",\"doi\":\"10.1090/MCOM/3645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the \\n\\n \\n \\n L\\n 2\\n \\n L^2\\n \\n\\n and energy norm. We present numerical results to verify the theoretical analysis.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"2107-2135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了圆盘上二维分数阶扩散反应方程的谱伽辽金方法。首先证明了加权Sobolev空间中解的正则性估计。然后得到了分数阶扩散反应方程在l2 L^2和能量范数下的谱伽辽金方法的最优收敛阶。我们给出了数值结果来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp error estimates of a spectral Galerkin method for a diffusion-reaction equation with integral fractional Laplacian on a disk
We investigate a spectral Galerkin method for the two-dimensional fractional diffusion-reaction equations on a disk. We first prove regularity estimates of solutions in the weighted Sobolev space. Then we obtain optimal convergence orders of a spectral Galerkin method for the fractional diffusion-reaction equations in the L 2 L^2 and energy norm. We present numerical results to verify the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信