{"title":"具有吸收、传导和表面蒸发的稳态熔体层模型","authors":"R.L. Baker","doi":"10.1016/0094-4548(82)90038-8","DOIUrl":null,"url":null,"abstract":"<div><p>An analytic solution is presented for the steady-state moving boundary melt layer problem with volumetric energy absorption. Energy balances across the melt layer and the liquid-solid interface show the relative contributions of absorption, conduction, and phase change energy transfer and allow the melt layer thickness to be determined. Due to the vaporization (ablation) of material from the melt layer surface, the temperature profiles exhibit a maximum value within the melt layer. The temperature profiles and melt layer thickness are shown to be functions of the spectral absorptivity, the thermal diffusivity, and the surface recession rate. These variables occur together in a dimensionless group.</p></div>","PeriodicalId":100875,"journal":{"name":"Letters in Heat and Mass Transfer","volume":"9 4","pages":"Pages 299-308"},"PeriodicalIF":0.0000,"publicationDate":"1982-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0094-4548(82)90038-8","citationCount":"2","resultStr":"{\"title\":\"A steady-state melt layer model with absorption, conduction, and surface vaporization\",\"authors\":\"R.L. Baker\",\"doi\":\"10.1016/0094-4548(82)90038-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An analytic solution is presented for the steady-state moving boundary melt layer problem with volumetric energy absorption. Energy balances across the melt layer and the liquid-solid interface show the relative contributions of absorption, conduction, and phase change energy transfer and allow the melt layer thickness to be determined. Due to the vaporization (ablation) of material from the melt layer surface, the temperature profiles exhibit a maximum value within the melt layer. The temperature profiles and melt layer thickness are shown to be functions of the spectral absorptivity, the thermal diffusivity, and the surface recession rate. These variables occur together in a dimensionless group.</p></div>\",\"PeriodicalId\":100875,\"journal\":{\"name\":\"Letters in Heat and Mass Transfer\",\"volume\":\"9 4\",\"pages\":\"Pages 299-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0094-4548(82)90038-8\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0094454882900388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0094454882900388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A steady-state melt layer model with absorption, conduction, and surface vaporization
An analytic solution is presented for the steady-state moving boundary melt layer problem with volumetric energy absorption. Energy balances across the melt layer and the liquid-solid interface show the relative contributions of absorption, conduction, and phase change energy transfer and allow the melt layer thickness to be determined. Due to the vaporization (ablation) of material from the melt layer surface, the temperature profiles exhibit a maximum value within the melt layer. The temperature profiles and melt layer thickness are shown to be functions of the spectral absorptivity, the thermal diffusivity, and the surface recession rate. These variables occur together in a dimensionless group.