构建和自动调优计算内核:GYSELA代码中自夸和StarPU的实验

Julien Bigot, V. Grandgirard, G. Latu, J. Méhaut, L. F. Millani, C. Passeron, S. Masnada, J. Richard, B. Videau
{"title":"构建和自动调优计算内核:GYSELA代码中自夸和StarPU的实验","authors":"Julien Bigot, V. Grandgirard, G. Latu, J. Méhaut, L. F. Millani, C. Passeron, S. Masnada, J. Richard, B. Videau","doi":"10.1051/PROC/201863152","DOIUrl":null,"url":null,"abstract":"Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the gysela code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"25 1 1","pages":"152-178"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Building and Auto-Tuning Computing Kernels: Experimenting with BOAST and StarPU in the GYSELA Code\",\"authors\":\"Julien Bigot, V. Grandgirard, G. Latu, J. Méhaut, L. F. Millani, C. Passeron, S. Masnada, J. Richard, B. Videau\",\"doi\":\"10.1051/PROC/201863152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the gysela code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"25 1 1\",\"pages\":\"152-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/201863152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201863152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

模拟湍流输运是预测托卡马克等离子体约束性能的主要目标。陀螺动力学框架考虑五维计算域来研究等离子体中的动力学问题;这导致了巨大的计算需求。因此,代码的优化是一个特别重要的方面,特别是因为协处理器和复杂的多核架构被预见为Exascale系统的构建块。这个项目旨在评估使用自夸和StarPU工具的两种自动调优方法在gysela代码上的适用性,以规避性能可移植性问题。为了评估这些方法的效益,考虑了一个特定的计算密集型核。StarPU能够匹配性能,有时甚至优于手工优化版本的代码,而将调度选择留给自动化过程。另一方面,自夸显示它非常适合在四个体系结构上获得执行时间方面的增益。在基础计算密集型内核上获得1.9到5.7之间的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building and Auto-Tuning Computing Kernels: Experimenting with BOAST and StarPU in the GYSELA Code
Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the gysela code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信