纯陶瓷的自由3d打印

M. Mahmoudi, Scott Burlison, S. Moreno, Majid Minary
{"title":"纯陶瓷的自由3d打印","authors":"M. Mahmoudi, Scott Burlison, S. Moreno, Majid Minary","doi":"10.1115/IMECE2020-23429","DOIUrl":null,"url":null,"abstract":"\n Polymer derived ceramics (PDC’s) offer a unique opportunity to 3D-print ceramics; however, 3D printing of such polymers require it to be combined with specialized light-sensitive agents and layer-by-layer crosslinking using an optical beam due to their low viscosity. Here, three-dimensional printing of ceramics enabled by dispensing the preceramic polymer from a nozzle inside a yield stress fluid is being demonstrated. The printed parts are crosslinked in the same gel. After crosslinking process, the printed parts are taken out of the gel and prepared for high temperature pyrolysis process that converts the cured parts to ceramic. The specially designed gel was three orders of magnitude more viscous than the preceramic polymer at no shear, which provided a stable medium during the whole process for maintaining the shape of the printed material and prevented possible instabilities. The SEM images of the cross section of the specimens showed that the printed material was dense and without any apparent porosity or cracks. Statistical analysis on the mechanical properties of the printed preceramic polymer specimens revealed that the printed specimens had characteristic strength (∼257 MPa).","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freeform 3D-Printing of Pure Ceramics\",\"authors\":\"M. Mahmoudi, Scott Burlison, S. Moreno, Majid Minary\",\"doi\":\"10.1115/IMECE2020-23429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer derived ceramics (PDC’s) offer a unique opportunity to 3D-print ceramics; however, 3D printing of such polymers require it to be combined with specialized light-sensitive agents and layer-by-layer crosslinking using an optical beam due to their low viscosity. Here, three-dimensional printing of ceramics enabled by dispensing the preceramic polymer from a nozzle inside a yield stress fluid is being demonstrated. The printed parts are crosslinked in the same gel. After crosslinking process, the printed parts are taken out of the gel and prepared for high temperature pyrolysis process that converts the cured parts to ceramic. The specially designed gel was three orders of magnitude more viscous than the preceramic polymer at no shear, which provided a stable medium during the whole process for maintaining the shape of the printed material and prevented possible instabilities. The SEM images of the cross section of the specimens showed that the printed material was dense and without any apparent porosity or cracks. Statistical analysis on the mechanical properties of the printed preceramic polymer specimens revealed that the printed specimens had characteristic strength (∼257 MPa).\",\"PeriodicalId\":23837,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-23429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物衍生陶瓷(PDC)为3d打印陶瓷提供了独特的机会;然而,由于这种聚合物的低粘度,3D打印需要将其与专门的光敏剂结合起来,并使用光束逐层交联。在这里,通过在屈服应力流体中的喷嘴分配预陶瓷聚合物来实现陶瓷的三维打印。打印的部件在同一凝胶中交联。交联处理后,将打印的部件从凝胶中取出,进行高温热解处理,将固化的部件转化为陶瓷。这种特殊设计的凝胶在没有剪切的情况下比预陶瓷聚合物的粘性高三个数量级,在整个过程中为保持打印材料的形状提供了稳定的介质,并防止了可能出现的不稳定性。试样截面的SEM图像显示,打印材料致密,无明显的孔隙和裂纹。对打印的预陶瓷聚合物样品的力学性能进行统计分析表明,打印的样品具有特征强度(~ 257 MPa)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Freeform 3D-Printing of Pure Ceramics
Polymer derived ceramics (PDC’s) offer a unique opportunity to 3D-print ceramics; however, 3D printing of such polymers require it to be combined with specialized light-sensitive agents and layer-by-layer crosslinking using an optical beam due to their low viscosity. Here, three-dimensional printing of ceramics enabled by dispensing the preceramic polymer from a nozzle inside a yield stress fluid is being demonstrated. The printed parts are crosslinked in the same gel. After crosslinking process, the printed parts are taken out of the gel and prepared for high temperature pyrolysis process that converts the cured parts to ceramic. The specially designed gel was three orders of magnitude more viscous than the preceramic polymer at no shear, which provided a stable medium during the whole process for maintaining the shape of the printed material and prevented possible instabilities. The SEM images of the cross section of the specimens showed that the printed material was dense and without any apparent porosity or cracks. Statistical analysis on the mechanical properties of the printed preceramic polymer specimens revealed that the printed specimens had characteristic strength (∼257 MPa).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信