改进Kagome拓扑结构的栅格桁架芯夹层复合材料压缩性能的实验与数值研究

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL
T. Dastan, R. Jafari Nedoushan, M. Sheikhzadeh, Woong‐Ryeol Yu
{"title":"改进Kagome拓扑结构的栅格桁架芯夹层复合材料压缩性能的实验与数值研究","authors":"T. Dastan, R. Jafari Nedoushan, M. Sheikhzadeh, Woong‐Ryeol Yu","doi":"10.1177/10996362231197684","DOIUrl":null,"url":null,"abstract":"A finite element model (FEM) using a more realistic three-dimensional geometry of lattice truss core was proposed to simulate the flatwise compression test on lattice truss core sandwich composites (LTCSCs). The goal was to reduce the disparity between experimental results and FEM predictions without inclusion of imperfection, as oppose to similar studies. Besides, two modified Kagome topologies were suggested and fabricated by adding vertical composite struts at specific locations. Based on the experimental results, the modified Kagome topologies exhibited superior specific compressive stiffness and strength over the Kagome topology, by about 100%. In addition, facesheet rotation of Kagome topology was found by the FEM, which considerably affect its compressive performance. Facesheet rotation is caused by the arrangement of composite struts of LTCSC. Compressive response of LTCSC was acceptably predicted by the FEM, though there was quite high error for compressive stiffness and strength. Probable sources of discrepancy between experimental and FEM results were discussed.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"10 1","pages":"826 - 845"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved compressive performance of lattice truss core sandwich composites with modified Kagome topologies: An experimental and numerical study\",\"authors\":\"T. Dastan, R. Jafari Nedoushan, M. Sheikhzadeh, Woong‐Ryeol Yu\",\"doi\":\"10.1177/10996362231197684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite element model (FEM) using a more realistic three-dimensional geometry of lattice truss core was proposed to simulate the flatwise compression test on lattice truss core sandwich composites (LTCSCs). The goal was to reduce the disparity between experimental results and FEM predictions without inclusion of imperfection, as oppose to similar studies. Besides, two modified Kagome topologies were suggested and fabricated by adding vertical composite struts at specific locations. Based on the experimental results, the modified Kagome topologies exhibited superior specific compressive stiffness and strength over the Kagome topology, by about 100%. In addition, facesheet rotation of Kagome topology was found by the FEM, which considerably affect its compressive performance. Facesheet rotation is caused by the arrangement of composite struts of LTCSC. Compressive response of LTCSC was acceptably predicted by the FEM, though there was quite high error for compressive stiffness and strength. Probable sources of discrepancy between experimental and FEM results were discussed.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"10 1\",\"pages\":\"826 - 845\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362231197684\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362231197684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种采用更为真实的格架芯三维几何结构的有限元模型来模拟格架芯夹层复合材料的平面压缩试验。目标是减少实验结果和FEM预测之间的差异,而不包括不完美,而不是类似的研究。此外,提出了两种改进的Kagome拓扑结构,并在特定位置添加垂直复合支撑。实验结果表明,改进后的Kagome拓扑结构比Kagome拓扑结构具有更高的比抗压刚度和强度,比Kagome拓扑结构高约100%。此外,通过有限元分析发现,Kagome拓扑的面板旋转对其抗压性能有较大影响。面板旋转是由LTCSC复合支撑的布置引起的。有限元法预测长轴混凝土的抗压响应是可以接受的,但抗压刚度和抗压强度误差较大。讨论了实验结果与有限元结果差异的可能来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved compressive performance of lattice truss core sandwich composites with modified Kagome topologies: An experimental and numerical study
A finite element model (FEM) using a more realistic three-dimensional geometry of lattice truss core was proposed to simulate the flatwise compression test on lattice truss core sandwich composites (LTCSCs). The goal was to reduce the disparity between experimental results and FEM predictions without inclusion of imperfection, as oppose to similar studies. Besides, two modified Kagome topologies were suggested and fabricated by adding vertical composite struts at specific locations. Based on the experimental results, the modified Kagome topologies exhibited superior specific compressive stiffness and strength over the Kagome topology, by about 100%. In addition, facesheet rotation of Kagome topology was found by the FEM, which considerably affect its compressive performance. Facesheet rotation is caused by the arrangement of composite struts of LTCSC. Compressive response of LTCSC was acceptably predicted by the FEM, though there was quite high error for compressive stiffness and strength. Probable sources of discrepancy between experimental and FEM results were discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信