半直积关于有限群1-上同调的注解及其在置换模上的应用

IF 0.5 2区 数学 Q3 MATHEMATICS
M. E. Harris
{"title":"半直积关于有限群1-上同调的注解及其在置换模上的应用","authors":"M. E. Harris","doi":"10.12988/ija.2021.91566","DOIUrl":null,"url":null,"abstract":"Section 17 of the important textbook [1] of M. Aschbacher studies Finite Group 1-Cohomology with a field coefficient ring via semi-direct products. This approach yields new structures and results to this basic subject. Here we assume that the coefficient ring is any commutative ring and we obtain all of the results of [1, Section 17] excluding Theorem 17.12. Via duality, this theorem extends the previous main result Theorem 17.11. In our final main results we assume that the coefficient ring is a discrete valuation ring, so that [1, Theorem 17.12] is a special case. Thus all of our results are applicable to Finite Group Modular Representation Theory. We conclude with applications to finite group permutation modules. Mathematics Subject Classification: 20J06","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on finite group 1-cohomology via semi-direct products with applications to permutation modules\",\"authors\":\"M. E. Harris\",\"doi\":\"10.12988/ija.2021.91566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Section 17 of the important textbook [1] of M. Aschbacher studies Finite Group 1-Cohomology with a field coefficient ring via semi-direct products. This approach yields new structures and results to this basic subject. Here we assume that the coefficient ring is any commutative ring and we obtain all of the results of [1, Section 17] excluding Theorem 17.12. Via duality, this theorem extends the previous main result Theorem 17.11. In our final main results we assume that the coefficient ring is a discrete valuation ring, so that [1, Theorem 17.12] is a special case. Thus all of our results are applicable to Finite Group Modular Representation Theory. We conclude with applications to finite group permutation modules. Mathematics Subject Classification: 20J06\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ija.2021.91566\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ija.2021.91566","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

M. Aschbacher的重要教科书[1]第17节通过半直积研究了具有场系数环的有限群1-上同。这种方法为这一基础学科提供了新的结构和结果。这里我们假设系数环是任意可交换环,我们得到了除定理17.12外的[1,Section 17]的所有结果。通过对偶性,这个定理扩展了前面的主要结果定理17.11。在我们最后的主要结果中,我们假设系数环是一个离散估值环,因此[1,定理17.12]是一个特例。因此,我们所有的结果都适用于有限群模表示理论。最后给出了有限群置换模的应用。数学学科分类:20J06
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on finite group 1-cohomology via semi-direct products with applications to permutation modules
Section 17 of the important textbook [1] of M. Aschbacher studies Finite Group 1-Cohomology with a field coefficient ring via semi-direct products. This approach yields new structures and results to this basic subject. Here we assume that the coefficient ring is any commutative ring and we obtain all of the results of [1, Section 17] excluding Theorem 17.12. Via duality, this theorem extends the previous main result Theorem 17.11. In our final main results we assume that the coefficient ring is a discrete valuation ring, so that [1, Theorem 17.12] is a special case. Thus all of our results are applicable to Finite Group Modular Representation Theory. We conclude with applications to finite group permutation modules. Mathematics Subject Classification: 20J06
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信