表面改性农业固体废弃物对废水中钼的吸附研究

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
V. SureshKumarM., M. VinoliaThamilarasi, P. A.K.
{"title":"表面改性农业固体废弃物对废水中钼的吸附研究","authors":"V. SureshKumarM., M. VinoliaThamilarasi, P. A.K.","doi":"10.30492/IJCCE.2021.525905.4601","DOIUrl":null,"url":null,"abstract":"The palm fruit husk, an agricultural solid waste does not adsorb Mo(VI). The intent of this endeavor was to estimate the adsorption capacity of the SAPFH towards Mo (VI) in wastewater. Hence the surface was altered using a surface activating group, cetyl trimethyl ammonium bromide (CTAB). The husk of the palm fruit, whose surface was modified, was subjected to evaluate the extent of extracting molybdenum that is present in aqueous solution. The maximal removal of molybdenum occurs at pH 2.0. The adsorbent dose necessary for the maximum adsorption of MoO42- was lesser for wastewater than for pure aqueous solutions. MoO42- took longer time to attain equilibrium at high concentrations. The stability results were suited with Langmuir, Freundlich and Dubinin-Raduskevich adsorption isotherms models. Dynamic investigation revealed that the uptake obeyed pseudo second order kinetic effigy. The adsorption of adsorbates did not change significantly with increase in temperature. Desorption of Mo (VI) showed that it is possible to retrieve Mo (VI) from the spent adsorbent. The influence of accompanying negative ions such as chloride, phosphate, sulphate and chromate on the Mo (VI) uptake was explored and the anions compete with Mo(VI) ions.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"68 1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adsorption of Molybdenum from Wastewater by Surface Altered Agricultural Solid Waste\",\"authors\":\"V. SureshKumarM., M. VinoliaThamilarasi, P. A.K.\",\"doi\":\"10.30492/IJCCE.2021.525905.4601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The palm fruit husk, an agricultural solid waste does not adsorb Mo(VI). The intent of this endeavor was to estimate the adsorption capacity of the SAPFH towards Mo (VI) in wastewater. Hence the surface was altered using a surface activating group, cetyl trimethyl ammonium bromide (CTAB). The husk of the palm fruit, whose surface was modified, was subjected to evaluate the extent of extracting molybdenum that is present in aqueous solution. The maximal removal of molybdenum occurs at pH 2.0. The adsorbent dose necessary for the maximum adsorption of MoO42- was lesser for wastewater than for pure aqueous solutions. MoO42- took longer time to attain equilibrium at high concentrations. The stability results were suited with Langmuir, Freundlich and Dubinin-Raduskevich adsorption isotherms models. Dynamic investigation revealed that the uptake obeyed pseudo second order kinetic effigy. The adsorption of adsorbates did not change significantly with increase in temperature. Desorption of Mo (VI) showed that it is possible to retrieve Mo (VI) from the spent adsorbent. The influence of accompanying negative ions such as chloride, phosphate, sulphate and chromate on the Mo (VI) uptake was explored and the anions compete with Mo(VI) ions.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"68 1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.525905.4601\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.525905.4601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

棕榈果壳,一种农业固体废物不吸附钼(VI)。这项工作的目的是估计SAPFH对废水中Mo (VI)的吸附能力。因此,使用表面活化基团十六烷基三甲基溴化铵(CTAB)改变了表面。棕榈果的外壳,其表面被修改,受到评估的程度提取钼是存在于水溶液中。钼的最大脱除发生在pH为2.0时。与纯水溶液相比,废水对MoO42-的最大吸附所需的吸附剂剂量更小。MoO42-在高浓度下达到平衡需要较长的时间。稳定性结果符合Langmuir、Freundlich和Dubinin-Raduskevich吸附等温线模型。动力学研究表明,吸附服从伪二级动力学人像。随着温度的升高,吸附剂的吸附量没有明显变化。Mo (VI)的解吸表明,从废吸附剂中回收Mo (VI)是可能的。探讨了氯离子、磷酸盐离子、硫酸盐离子、铬酸盐离子等伴生负离子对Mo(VI)吸收的影响,阴离子与Mo(VI)离子竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption of Molybdenum from Wastewater by Surface Altered Agricultural Solid Waste
The palm fruit husk, an agricultural solid waste does not adsorb Mo(VI). The intent of this endeavor was to estimate the adsorption capacity of the SAPFH towards Mo (VI) in wastewater. Hence the surface was altered using a surface activating group, cetyl trimethyl ammonium bromide (CTAB). The husk of the palm fruit, whose surface was modified, was subjected to evaluate the extent of extracting molybdenum that is present in aqueous solution. The maximal removal of molybdenum occurs at pH 2.0. The adsorbent dose necessary for the maximum adsorption of MoO42- was lesser for wastewater than for pure aqueous solutions. MoO42- took longer time to attain equilibrium at high concentrations. The stability results were suited with Langmuir, Freundlich and Dubinin-Raduskevich adsorption isotherms models. Dynamic investigation revealed that the uptake obeyed pseudo second order kinetic effigy. The adsorption of adsorbates did not change significantly with increase in temperature. Desorption of Mo (VI) showed that it is possible to retrieve Mo (VI) from the spent adsorbent. The influence of accompanying negative ions such as chloride, phosphate, sulphate and chromate on the Mo (VI) uptake was explored and the anions compete with Mo(VI) ions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信